Algebraic Ideas in Ergodic Theory

Algebraic Ideas in Ergodic Theory PDF Author: Klaus Schmidt
Publisher: American Mathematical Soc.
ISBN: 0821807277
Category : Mathematics
Languages : en
Pages : 102

Get Book Here

Book Description
The author examines the influence of operator algebras on dynamics, concentrating on ergodic equivalence relations. He also covers higher dimensional Markov shifts, making the assumption that the Markov shift carries a group structure.

Algebraic Ideas in Ergodic Theory

Algebraic Ideas in Ergodic Theory PDF Author: Klaus Schmidt
Publisher: American Mathematical Soc.
ISBN: 0821807277
Category : Mathematics
Languages : en
Pages : 102

Get Book Here

Book Description
The author examines the influence of operator algebras on dynamics, concentrating on ergodic equivalence relations. He also covers higher dimensional Markov shifts, making the assumption that the Markov shift carries a group structure.

Algebraic Ideas in Ergodic Theory

Algebraic Ideas in Ergodic Theory PDF Author: Klaus Schmidt
Publisher: American Mathematical Soc.
ISBN: 9780821889206
Category : Mathematics
Languages : en
Pages : 104

Get Book Here

Book Description


Recurrence in Ergodic Theory and Combinatorial Number Theory

Recurrence in Ergodic Theory and Combinatorial Number Theory PDF Author: Harry Furstenberg
Publisher: Princeton University Press
ISBN: 1400855160
Category : Mathematics
Languages : en
Pages : 216

Get Book Here

Book Description
Topological dynamics and ergodic theory usually have been treated independently. H. Furstenberg, instead, develops the common ground between them by applying the modern theory of dynamical systems to combinatories and number theory. Originally published in 1981. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Dynamical Systems, Ergodic Theory and Applications

Dynamical Systems, Ergodic Theory and Applications PDF Author: L.A. Bunimovich
Publisher: Springer Science & Business Media
ISBN: 9783540663164
Category : Mathematics
Languages : en
Pages : 476

Get Book Here

Book Description
This EMS volume, the first edition of which was published as Dynamical Systems II, EMS 2, familiarizes the reader with the fundamental ideas and results of modern ergodic theory and its applications to dynamical systems and statistical mechanics. The enlarged and revised second edition adds two new contributions on ergodic theory of flows on homogeneous manifolds and on methods of algebraic geometry in the theory of interval exchange transformations.

Operator Theoretic Aspects of Ergodic Theory

Operator Theoretic Aspects of Ergodic Theory PDF Author: Tanja Eisner
Publisher: Springer
ISBN: 3319168983
Category : Mathematics
Languages : en
Pages : 630

Get Book Here

Book Description
Stunning recent results by Host–Kra, Green–Tao, and others, highlight the timeliness of this systematic introduction to classical ergodic theory using the tools of operator theory. Assuming no prior exposure to ergodic theory, this book provides a modern foundation for introductory courses on ergodic theory, especially for students or researchers with an interest in functional analysis. While basic analytic notions and results are reviewed in several appendices, more advanced operator theoretic topics are developed in detail, even beyond their immediate connection with ergodic theory. As a consequence, the book is also suitable for advanced or special-topic courses on functional analysis with applications to ergodic theory. Topics include: • an intuitive introduction to ergodic theory • an introduction to the basic notions, constructions, and standard examples of topological dynamical systems • Koopman operators, Banach lattices, lattice and algebra homomorphisms, and the Gelfand–Naimark theorem • measure-preserving dynamical systems • von Neumann’s Mean Ergodic Theorem and Birkhoff’s Pointwise Ergodic Theorem • strongly and weakly mixing systems • an examination of notions of isomorphism for measure-preserving systems • Markov operators, and the related concept of a factor of a measure preserving system • compact groups and semigroups, and a powerful tool in their study, the Jacobs–de Leeuw–Glicksberg decomposition • an introduction to the spectral theory of dynamical systems, the theorems of Furstenberg and Weiss on multiple recurrence, and applications of dynamical systems to combinatorics (theorems of van der Waerden, Gallai,and Hindman, Furstenberg’s Correspondence Principle, theorems of Roth and Furstenberg–Sárközy) Beyond its use in the classroom, Operator Theoretic Aspects of Ergodic Theory can serve as a valuable foundation for doing research at the intersection of ergodic theory and operator theory

Group Actions in Ergodic Theory, Geometry, and Topology

Group Actions in Ergodic Theory, Geometry, and Topology PDF Author: Robert J. Zimmer
Publisher: University of Chicago Press
ISBN: 022656827X
Category : Mathematics
Languages : en
Pages : 724

Get Book Here

Book Description
Robert J. Zimmer is best known in mathematics for the highly influential conjectures and program that bear his name. Group Actions in Ergodic Theory, Geometry, and Topology: Selected Papers brings together some of the most significant writings by Zimmer, which lay out his program and contextualize his work over the course of his career. Zimmer’s body of work is remarkable in that it involves methods from a variety of mathematical disciplines, such as Lie theory, differential geometry, ergodic theory and dynamical systems, arithmetic groups, and topology, and at the same time offers a unifying perspective. After arriving at the University of Chicago in 1977, Zimmer extended his earlier research on ergodic group actions to prove his cocycle superrigidity theorem which proved to be a pivotal point in articulating and developing his program. Zimmer’s ideas opened the door to many others, and they continue to be actively employed in many domains related to group actions in ergodic theory, geometry, and topology. In addition to the selected papers themselves, this volume opens with a foreword by David Fisher, Alexander Lubotzky, and Gregory Margulis, as well as a substantial introductory essay by Zimmer recounting the course of his career in mathematics. The volume closes with an afterword by Fisher on the most recent developments around the Zimmer program.

Ergodic Theory

Ergodic Theory PDF Author: Manfred Einsiedler
Publisher: Springer Science & Business Media
ISBN: 0857290215
Category : Mathematics
Languages : en
Pages : 486

Get Book Here

Book Description
This text is a rigorous introduction to ergodic theory, developing the machinery of conditional measures and expectations, mixing, and recurrence. Beginning by developing the basics of ergodic theory and progressing to describe some recent applications to number theory, this book goes beyond the standard texts in this topic. Applications include Weyl's polynomial equidistribution theorem, the ergodic proof of Szemeredi's theorem, the connection between the continued fraction map and the modular surface, and a proof of the equidistribution of horocycle orbits. Ergodic Theory with a view towards Number Theory will appeal to mathematicians with some standard background in measure theory and functional analysis. No background in ergodic theory or Lie theory is assumed, and a number of exercises and hints to problems are included, making this the perfect companion for graduate students and researchers in ergodic theory, homogenous dynamics or number theory.

Dynamical Systems and Ergodic Theory

Dynamical Systems and Ergodic Theory PDF Author: Mark Pollicott
Publisher: Cambridge University Press
ISBN: 9780521575997
Category : Mathematics
Languages : en
Pages : 198

Get Book Here

Book Description
This book is an essentially self contained introduction to topological dynamics and ergodic theory. It is divided into a number of relatively short chapters with the intention that each may be used as a component of a lecture course tailored to the particular audience. Parts of the book are suitable for a final year undergraduate course or for a masters level course. A number of applications are given, principally to number theory and arithmetic progressions (through van der waerden's theorem and szemerdi's theorem).

Foundations of Ergodic Theory

Foundations of Ergodic Theory PDF Author: Marcelo Viana
Publisher: Cambridge University Press
ISBN: 1316445429
Category : Mathematics
Languages : en
Pages : 547

Get Book Here

Book Description
Rich with examples and applications, this textbook provides a coherent and self-contained introduction to ergodic theory, suitable for a variety of one- or two-semester courses. The authors' clear and fluent exposition helps the reader to grasp quickly the most important ideas of the theory, and their use of concrete examples illustrates these ideas and puts the results into perspective. The book requires few prerequisites, with background material supplied in the appendix. The first four chapters cover elementary material suitable for undergraduate students – invariance, recurrence and ergodicity – as well as some of the main examples. The authors then gradually build up to more sophisticated topics, including correlations, equivalent systems, entropy, the variational principle and thermodynamical formalism. The 400 exercises increase in difficulty through the text and test the reader's understanding of the whole theory. Hints and solutions are provided at the end of the book.

Ergodic Theory

Ergodic Theory PDF Author: David Kerr
Publisher: Springer
ISBN: 3319498479
Category : Mathematics
Languages : en
Pages : 455

Get Book Here

Book Description
This book provides an introduction to the ergodic theory and topological dynamics of actions of countable groups. It is organized around the theme of probabilistic and combinatorial independence, and highlights the complementary roles of the asymptotic and the perturbative in its comprehensive treatment of the core concepts of weak mixing, compactness, entropy, and amenability. The more advanced material includes Popa's cocycle superrigidity, the Furstenberg-Zimmer structure theorem, and sofic entropy. The structure of the book is designed to be flexible enough to serve a variety of readers. The discussion of dynamics is developed from scratch assuming some rudimentary functional analysis, measure theory, and topology, and parts of the text can be used as an introductory course. Researchers in ergodic theory and related areas will also find the book valuable as a reference.