Algebraic and Geometric Ideas in the Theory of Discrete Optimization

Algebraic and Geometric Ideas in the Theory of Discrete Optimization PDF Author: Jesus A. De Loera
Publisher: SIAM
ISBN: 1611972434
Category : Mathematics
Languages : en
Pages : 320

Get Book Here

Book Description
In recent years, many new techniques have emerged in the mathematical theory of discrete optimization that have proven to be effective in solving a number of hard problems. This book presents these recent advances, particularly those that arise from algebraic geometry, commutative algebra, convex and discrete geometry, generating functions, and other tools normally considered outside of the standard curriculum in optimization. These new techniques, all of which are presented with minimal prerequisites, provide a transition from linear to nonlinear discrete optimization. This book can be used as a textbook for advanced undergraduates or first-year graduate students in mathematics, computer science or operations research. It is also appropriate for mathematicians, engineers, and scientists engaged in computation who wish to gain a deeper understanding of how and why algorithms work.

Algebraic and Geometric Ideas in the Theory of Discrete Optimization

Algebraic and Geometric Ideas in the Theory of Discrete Optimization PDF Author: Jesus A. De Loera
Publisher: SIAM
ISBN: 1611972434
Category : Mathematics
Languages : en
Pages : 320

Get Book Here

Book Description
In recent years, many new techniques have emerged in the mathematical theory of discrete optimization that have proven to be effective in solving a number of hard problems. This book presents these recent advances, particularly those that arise from algebraic geometry, commutative algebra, convex and discrete geometry, generating functions, and other tools normally considered outside of the standard curriculum in optimization. These new techniques, all of which are presented with minimal prerequisites, provide a transition from linear to nonlinear discrete optimization. This book can be used as a textbook for advanced undergraduates or first-year graduate students in mathematics, computer science or operations research. It is also appropriate for mathematicians, engineers, and scientists engaged in computation who wish to gain a deeper understanding of how and why algorithms work.

Algebraic and Geometric Methods in Discrete Mathematics

Algebraic and Geometric Methods in Discrete Mathematics PDF Author: Heather A. Harrington
Publisher: American Mathematical Soc.
ISBN: 1470423219
Category : Mathematics
Languages : en
Pages : 290

Get Book Here

Book Description
This volume contains the proceedings of the AMS Special Session on Algebraic and Geometric Methods in Applied Discrete Mathematics, held on January 11, 2015, in San Antonio, Texas. The papers present connections between techniques from “pure” mathematics and various applications amenable to the analysis of discrete models, encompassing applications of combinatorics, topology, algebra, geometry, optimization, and representation theory. Papers not only present novel results, but also survey the current state of knowledge of important topics in applied discrete mathematics. Particular highlights include: a new computational framework, based on geometric combinatorics, for structure prediction from RNA sequences; a new method for approximating the optimal solution of a sum of squares problem; a survey of recent Helly-type geometric theorems; applications of representation theory to voting theory and game theory; a study of fixed points of tensors; and exponential random graph models from the perspective of algebraic statistics with applications to networks. This volume was written for those trained in areas such as algebra, topology, geometry, and combinatorics who are interested in tackling problems in fields such as biology, the social sciences, data analysis, and optimization. It may be useful not only for experts, but also for students who wish to gain an applied or interdisciplinary perspective.

Algebraic and Geometric Methods in Statistics

Algebraic and Geometric Methods in Statistics PDF Author: Paolo Gibilisco
Publisher: Cambridge University Press
ISBN: 0521896193
Category : Mathematics
Languages : en
Pages : 447

Get Book Here

Book Description
An up-to-date account of algebraic statistics and information geometry, which also explores the emerging connections between these two disciplines.

Polyhedral and Algebraic Methods in Computational Geometry

Polyhedral and Algebraic Methods in Computational Geometry PDF Author: Michael Joswig
Publisher: Springer Science & Business Media
ISBN: 1447148177
Category : Mathematics
Languages : en
Pages : 251

Get Book Here

Book Description
Polyhedral and Algebraic Methods in Computational Geometry provides a thorough introduction into algorithmic geometry and its applications. It presents its primary topics from the viewpoints of discrete, convex and elementary algebraic geometry. The first part of the book studies classical problems and techniques that refer to polyhedral structures. The authors include a study on algorithms for computing convex hulls as well as the construction of Voronoi diagrams and Delone triangulations. The second part of the book develops the primary concepts of (non-linear) computational algebraic geometry. Here, the book looks at Gröbner bases and solving systems of polynomial equations. The theory is illustrated by applications in computer graphics, curve reconstruction and robotics. Throughout the book, interconnections between computational geometry and other disciplines (such as algebraic geometry, optimization and numerical mathematics) are established. Polyhedral and Algebraic Methods in Computational Geometry is directed towards advanced undergraduates in mathematics and computer science, as well as towards engineering students who are interested in the applications of computational geometry.

Algebraic and Discrete Mathematical Methods for Modern Biology

Algebraic and Discrete Mathematical Methods for Modern Biology PDF Author: Raina Robeva
Publisher: Academic Press
ISBN: 0128012714
Category : Mathematics
Languages : en
Pages : 383

Get Book Here

Book Description
Written by experts in both mathematics and biology, Algebraic and Discrete Mathematical Methods for Modern Biology offers a bridge between math and biology, providing a framework for simulating, analyzing, predicting, and modulating the behavior of complex biological systems. Each chapter begins with a question from modern biology, followed by the description of certain mathematical methods and theory appropriate in the search of answers. Every topic provides a fast-track pathway through the problem by presenting the biological foundation, covering the relevant mathematical theory, and highlighting connections between them. Many of the projects and exercises embedded in each chapter utilize specialized software, providing students with much-needed familiarity and experience with computing applications, critical components of the "modern biology" skill set. This book is appropriate for mathematics courses such as finite mathematics, discrete structures, linear algebra, abstract/modern algebra, graph theory, probability, bioinformatics, statistics, biostatistics, and modeling, as well as for biology courses such as genetics, cell and molecular biology, biochemistry, ecology, and evolution. - Examines significant questions in modern biology and their mathematical treatments - Presents important mathematical concepts and tools in the context of essential biology - Features material of interest to students in both mathematics and biology - Presents chapters in modular format so coverage need not follow the Table of Contents - Introduces projects appropriate for undergraduate research - Utilizes freely accessible software for visualization, simulation, and analysis in modern biology - Requires no calculus as a prerequisite - Provides a complete Solutions Manual - Features a companion website with supplementary resources

Methods of Algebraic Geometry: Volume 3

Methods of Algebraic Geometry: Volume 3 PDF Author: W. V. D. Hodge
Publisher: Cambridge University Press
ISBN: 0521467756
Category : Mathematics
Languages : en
Pages : 350

Get Book Here

Book Description
All three volumes of Hodge and Pedoe's classic work have now been reissued. Together, these books give an insight into algebraic geometry that is unique and unsurpassed.

Handbook of Discrete and Computational Geometry

Handbook of Discrete and Computational Geometry PDF Author: Csaba D. Toth
Publisher: CRC Press
ISBN: 1351645919
Category : Computers
Languages : en
Pages : 2354

Get Book Here

Book Description
The Handbook of Discrete and Computational Geometry is intended as a reference book fully accessible to nonspecialists as well as specialists, covering all major aspects of both fields. The book offers the most important results and methods in discrete and computational geometry to those who use them in their work, both in the academic world—as researchers in mathematics and computer science—and in the professional world—as practitioners in fields as diverse as operations research, molecular biology, and robotics. Discrete geometry has contributed significantly to the growth of discrete mathematics in recent years. This has been fueled partly by the advent of powerful computers and by the recent explosion of activity in the relatively young field of computational geometry. This synthesis between discrete and computational geometry lies at the heart of this Handbook. A growing list of application fields includes combinatorial optimization, computer-aided design, computer graphics, crystallography, data analysis, error-correcting codes, geographic information systems, motion planning, operations research, pattern recognition, robotics, solid modeling, and tomography.

Algebraic Geometry and Geometric Modeling

Algebraic Geometry and Geometric Modeling PDF Author: Mohamed Elkadi
Publisher: Springer Science & Business Media
ISBN: 3540332758
Category : Mathematics
Languages : en
Pages : 252

Get Book Here

Book Description
This book spans the distance between algebraic descriptions of geometric objects and the rendering of digital geometric shapes based on algebraic models. These contrasting points of view inspire a thorough analysis of the key challenges and how they are met. The articles focus on important classes of problems: implicitization, classification, and intersection. Combining illustrative graphics, computations and review articles this book helps the reader gain a firm practical grasp of these subjects.

Algebraic and Analytic Methods in Representation Theory

Algebraic and Analytic Methods in Representation Theory PDF Author:
Publisher: Elsevier
ISBN: 0080526950
Category : Mathematics
Languages : en
Pages : 357

Get Book Here

Book Description
This book is a compilation of several works from well-recognized figures in the field of Representation Theory. The presentation of the topic is unique in offering several different points of view, which should makethe book very useful to students and experts alike.Presents several different points of view on key topics in representation theory, from internationally known experts in the field

Geometric Methods and Optimization Problems

Geometric Methods and Optimization Problems PDF Author: Vladimir Boltyanski
Publisher: Springer Science & Business Media
ISBN: 1461553199
Category : Mathematics
Languages : en
Pages : 438

Get Book Here

Book Description
VII Preface In many fields of mathematics, geometry has established itself as a fruitful method and common language for describing basic phenomena and problems as well as suggesting ways of solutions. Especially in pure mathematics this is ob vious and well-known (examples are the much discussed interplay between lin ear algebra and analytical geometry and several problems in multidimensional analysis). On the other hand, many specialists from applied mathematics seem to prefer more formal analytical and numerical methods and representations. Nevertheless, very often the internal development of disciplines from applied mathematics led to geometric models, and occasionally breakthroughs were b~ed on geometric insights. An excellent example is the Klee-Minty cube, solving a problem of linear programming by transforming it into a geomet ric problem. Also the development of convex programming in recent decades demonstrated the power of methods that evolved within the field of convex geometry. The present book focuses on three applied disciplines: control theory, location science and computational geometry. It is our aim to demonstrate how methods and topics from convex geometry in a wider sense (separation theory of convex cones, Minkowski geometry, convex partitionings, etc.) can help to solve various problems from these disciplines.