Algebraic and Analytic Geometry

Algebraic and Analytic Geometry PDF Author: Amnon Neeman
Publisher: Cambridge University Press
ISBN: 0521709830
Category : Mathematics
Languages : en
Pages : 433

Get Book Here

Book Description
Modern introduction to algebraic geometry for undergraduates; uses analytic ideas to access algebraic theory.

Algebraic and Analytic Geometry

Algebraic and Analytic Geometry PDF Author: Amnon Neeman
Publisher: Cambridge University Press
ISBN: 0521709830
Category : Mathematics
Languages : en
Pages : 433

Get Book Here

Book Description
Modern introduction to algebraic geometry for undergraduates; uses analytic ideas to access algebraic theory.

Algebraic and Analytic Geometry

Algebraic and Analytic Geometry PDF Author: Amnon Neeman
Publisher:
ISBN: 9781107365469
Category : Electronic books
Languages : en
Pages : 434

Get Book Here

Book Description
Modern introduction to algebraic geometry for undergraduates; uses analytic ideas to access algebraic theory.

Local Analytic Geometry

Local Analytic Geometry PDF Author: Theo de Jong
Publisher: Springer Science & Business Media
ISBN: 3322901599
Category : Mathematics
Languages : en
Pages : 395

Get Book Here

Book Description
Auf der Grundlage einer Einführung in die kommutative Algebra, algebraische Geometrie und komplexe Analysis werden zunächst Kurvensingularitäten untersucht. Daran schließen Ergebnisse an, die zum ersten Mal in einem Lehrbuch aufgenommen wurden, das Verhalten von Invarianten in Familien, Standardbasen für konvergente Potenzreihenringe, Approximationssätze, Grauerts Satz über die Existenz der versellen Deformation. Das Buch richtet sich an Studenten höherer Semester, Doktoranden und Dozenten. Es ist auf der Grundlage mehrerer Vorlesungen und Seminaren an den Universitäten in Kaiserslautern und Saarbrücken entstanden.

Analytic and Algebraic Geometry

Analytic and Algebraic Geometry PDF Author: Anilatmaja Aryasomayajula
Publisher:
ISBN: 9789386279644
Category : Geometry, Algebraic
Languages : en
Pages : 0

Get Book Here

Book Description
Introduces recent and advanced techniques in the area of Analytic and Algebraic Geometry. This volume explores recent developments in the area, and is aimed at young researchers, who are new to this area. Research articles have been added to give examples of how to use these techniques to prove new results.

Linear Algebra and Analytic Geometry for Physical Sciences

Linear Algebra and Analytic Geometry for Physical Sciences PDF Author: Giovanni Landi
Publisher: Springer
ISBN: 3319783610
Category : Science
Languages : en
Pages : 348

Get Book Here

Book Description
A self-contained introduction to finite dimensional vector spaces, matrices, systems of linear equations, spectral analysis on euclidean and hermitian spaces, affine euclidean geometry, quadratic forms and conic sections. The mathematical formalism is motivated and introduced by problems from physics, notably mechanics (including celestial) and electro-magnetism, with more than two hundreds examples and solved exercises.Topics include: The group of orthogonal transformations on euclidean spaces, in particular rotations, with Euler angles and angular velocity. The rigid body with its inertia matrix. The unitary group. Lie algebras and exponential map. The Dirac’s bra-ket formalism. Spectral theory for self-adjoint endomorphisms on euclidean and hermitian spaces. The Minkowski spacetime from special relativity and the Maxwell equations. Conic sections with the use of eccentricity and Keplerian motions. An appendix collects basic algebraic notions like group, ring and field; and complex numbers and integers modulo a prime number.The book will be useful to students taking a physics or engineer degree for a basic education as well as for students who wish to be competent in the subject and who may want to pursue a post-graduate qualification.

Rigid Analytic Geometry and Its Applications

Rigid Analytic Geometry and Its Applications PDF Author: Jean Fresnel
Publisher: Springer Science & Business Media
ISBN: 1461200415
Category : Mathematics
Languages : en
Pages : 303

Get Book Here

Book Description
Rigid (analytic) spaces were invented to describe degenerations, reductions, and moduli of algebraic curves and abelian varieties. This work, a revised and greatly expanded new English edition of an earlier French text by the same authors, presents important new developments and applications of the theory of rigid analytic spaces to abelian varieties, "points of rigid spaces," étale cohomology, Drinfeld modular curves, and Monsky-Washnitzer cohomology. The exposition is concise, self-contained, rich in examples and exercises, and will serve as an excellent graduate-level text for the classroom or for self-study.

Spectral Theory and Analytic Geometry over Non-Archimedean Fields

Spectral Theory and Analytic Geometry over Non-Archimedean Fields PDF Author: Vladimir G. Berkovich
Publisher: American Mathematical Soc.
ISBN: 0821890204
Category : Mathematics
Languages : en
Pages : 181

Get Book Here

Book Description
The purpose of this book is to introduce a new notion of analytic space over a non-Archimedean field. Despite the total disconnectedness of the ground field, these analytic spaces have the usual topological properties of a complex analytic space, such as local compactness and local arcwise connectedness. This makes it possible to apply the usual notions of homotopy and singular homology. The book includes a homotopic characterization of the analytic spaces associated with certain classes of algebraic varieties and an interpretation of Bruhat-Tits buildings in terms of these analytic spaces. The author also studies the connection with the earlier notion of a rigid analytic space. Geometrical considerations are used to obtain some applications, and the analytic spaces are used to construct the foundations of a non-Archimedean spectral theory of bounded linear operators. This book requires a background at the level of basic graduate courses in algebra and topology, as well as some familiarity with algebraic geometry. It would be of interest to research mathematicians and graduate students working in algebraic geometry, number theory, and -adic analysis.

Analytic and Algebraic Geometry

Analytic and Algebraic Geometry PDF Author: Jeffery D. McNeal
Publisher: American Mathematical Soc.
ISBN: 0821872753
Category : Mathematics
Languages : en
Pages : 601

Get Book Here

Book Description
"Analytic and algebraic geometers often study the same geometric structures but bring different methods to bear on them. While this dual approach has been spectacularly successful at solving problems, the language differences between algebra and analysis also represent a difficulty for students and researchers in geometry, particularly complex geometry. The PCMI program was designed to partially address this language gulf, by presenting some of the active developments in algebraic and analytic geometry in a form suitable for students on the 'other side' of the analysis-algebra language divide. One focal point of the summer school was multiplier ideals, a subject of wide current interest in both subjects. The present volume is based on a series of lectures at the PCMI summer school on analytic and algebraic geometry. The series is designed to give a high-level introduction to the advanced techniques behind some recent developments in algebraic and analytic geometry. The lectures contain many illustrative examples, detailed computations, and new perspectives on the topics presented, in order to enhance access of this material to non-specialists."--Publisher's description.

Complex Analytic Geometry

Complex Analytic Geometry PDF Author: Gerd Fischer
Publisher: Springer
ISBN: 354038121X
Category : Mathematics
Languages : en
Pages : 208

Get Book Here

Book Description


Algebraic Geometry

Algebraic Geometry PDF Author: Robin Hartshorne
Publisher: Springer Science & Business Media
ISBN: 1475738498
Category : Mathematics
Languages : en
Pages : 511

Get Book Here

Book Description
An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.