Pure Mathematics for Beginners

Pure Mathematics for Beginners PDF Author: Steve Warner
Publisher:
ISBN: 9780999811757
Category :
Languages : en
Pages : 262

Get Book Here

Book Description
Pure Mathematics for Beginners Pure Mathematics for Beginners consists of a series of lessons in Logic, Set Theory, Abstract Algebra, Number Theory, Real Analysis, Topology, Complex Analysis, and Linear Algebra. The 16 lessons in this book cover basic through intermediate material from each of these 8 topics. In addition, all the proofwriting skills that are essential for advanced study in mathematics are covered and reviewed extensively. Pure Mathematics for Beginners is perfect for professors teaching an introductory college course in higher mathematics high school teachers working with advanced math students students wishing to see the type of mathematics they would be exposed to as a math major. The material in this pure math book includes: 16 lessons in 8 subject areas. A problem set after each lesson arranged by difficulty level. A complete solution guide is included as a downloadable PDF file. Pure Math Book Table Of Contents (Selected) Here's a selection from the table of contents: Introduction Lesson 1 - Logic: Statements and Truth Lesson 2 - Set Theory: Sets and Subsets Lesson 3 - Abstract Algebra: Semigroups, Monoids, and Groups Lesson 4 - Number Theory: Ring of Integers Lesson 5 - Real Analysis: The Complete Ordered Field of Reals Lesson 6 - Topology: The Topology of R Lesson 7 - Complex Analysis: The field of Complex Numbers Lesson 8 - Linear Algebra: Vector Spaces Lesson 9 - Logic: Logical Arguments Lesson 10 - Set Theory: Relations and Functions Lesson 11 - Abstract Algebra: Structures and Homomorphisms Lesson 12 - Number Theory: Primes, GCD, and LCM Lesson 13 - Real Analysis: Limits and Continuity Lesson 14 - Topology: Spaces and Homeomorphisms Lesson 15 - Complex Analysis: Complex Valued Functions Lesson 16 - Linear Algebra: Linear Transformations

Pure Mathematics for Beginners

Pure Mathematics for Beginners PDF Author: Steve Warner
Publisher:
ISBN: 9780999811757
Category :
Languages : en
Pages : 262

Get Book Here

Book Description
Pure Mathematics for Beginners Pure Mathematics for Beginners consists of a series of lessons in Logic, Set Theory, Abstract Algebra, Number Theory, Real Analysis, Topology, Complex Analysis, and Linear Algebra. The 16 lessons in this book cover basic through intermediate material from each of these 8 topics. In addition, all the proofwriting skills that are essential for advanced study in mathematics are covered and reviewed extensively. Pure Mathematics for Beginners is perfect for professors teaching an introductory college course in higher mathematics high school teachers working with advanced math students students wishing to see the type of mathematics they would be exposed to as a math major. The material in this pure math book includes: 16 lessons in 8 subject areas. A problem set after each lesson arranged by difficulty level. A complete solution guide is included as a downloadable PDF file. Pure Math Book Table Of Contents (Selected) Here's a selection from the table of contents: Introduction Lesson 1 - Logic: Statements and Truth Lesson 2 - Set Theory: Sets and Subsets Lesson 3 - Abstract Algebra: Semigroups, Monoids, and Groups Lesson 4 - Number Theory: Ring of Integers Lesson 5 - Real Analysis: The Complete Ordered Field of Reals Lesson 6 - Topology: The Topology of R Lesson 7 - Complex Analysis: The field of Complex Numbers Lesson 8 - Linear Algebra: Vector Spaces Lesson 9 - Logic: Logical Arguments Lesson 10 - Set Theory: Relations and Functions Lesson 11 - Abstract Algebra: Structures and Homomorphisms Lesson 12 - Number Theory: Primes, GCD, and LCM Lesson 13 - Real Analysis: Limits and Continuity Lesson 14 - Topology: Spaces and Homeomorphisms Lesson 15 - Complex Analysis: Complex Valued Functions Lesson 16 - Linear Algebra: Linear Transformations

Algebra, Mathematical Logic, Number Theory, Topology

Algebra, Mathematical Logic, Number Theory, Topology PDF Author: Ivan Matveevich Vinogradov
Publisher: American Mathematical Soc.
ISBN: 9780821830963
Category : Algebra
Languages : en
Pages : 284

Get Book Here

Book Description
Collection of papers on the current research in algebra, mathematical logic, number theory and topology.

Mathematics From the Birth of Numbers

Mathematics From the Birth of Numbers PDF Author: Jan Gullberg
Publisher: W. W. Norton & Company
ISBN: 9780393040029
Category : Mathematics
Languages : en
Pages : 1148

Get Book Here

Book Description
An illustrated exploration of mathematics and its history, beginning with a study of numbers and their symbols, and continuing with a broad survey that includes consideration of algebra, geometry, hyperbolic functions, fractals, and many other mathematical functions.

Mathematical Logic

Mathematical Logic PDF Author: H.-D. Ebbinghaus
Publisher: Springer Science & Business Media
ISBN: 1475723555
Category : Mathematics
Languages : en
Pages : 290

Get Book Here

Book Description
This introduction to first-order logic clearly works out the role of first-order logic in the foundations of mathematics, particularly the two basic questions of the range of the axiomatic method and of theorem-proving by machines. It covers several advanced topics not commonly treated in introductory texts, such as Fraïssé's characterization of elementary equivalence, Lindström's theorem on the maximality of first-order logic, and the fundamentals of logic programming.

Categorical Foundations

Categorical Foundations PDF Author: Maria Cristina Pedicchio
Publisher: Cambridge University Press
ISBN: 9780521834148
Category : Mathematics
Languages : en
Pages : 452

Get Book Here

Book Description
Publisher Description

Foundations of Applied Mathematics, Volume I

Foundations of Applied Mathematics, Volume I PDF Author: Jeffrey Humpherys
Publisher: SIAM
ISBN: 1611974895
Category : Mathematics
Languages : en
Pages : 710

Get Book Here

Book Description
This book provides the essential foundations of both linear and nonlinear analysis necessary for understanding and working in twenty-first century applied and computational mathematics. In addition to the standard topics, this text includes several key concepts of modern applied mathematical analysis that should be, but are not typically, included in advanced undergraduate and beginning graduate mathematics curricula. This material is the introductory foundation upon which algorithm analysis, optimization, probability, statistics, differential equations, machine learning, and control theory are built. When used in concert with the free supplemental lab materials, this text teaches students both the theory and the computational practice of modern mathematical analysis. Foundations of Applied Mathematics, Volume 1: Mathematical Analysis includes several key topics not usually treated in courses at this level, such as uniform contraction mappings, the continuous linear extension theorem, Daniell?Lebesgue integration, resolvents, spectral resolution theory, and pseudospectra. Ideas are developed in a mathematically rigorous way and students are provided with powerful tools and beautiful ideas that yield a number of nice proofs, all of which contribute to a deep understanding of advanced analysis and linear algebra. Carefully thought out exercises and examples are built on each other to reinforce and retain concepts and ideas and to achieve greater depth. Associated lab materials are available that expose students to applications and numerical computation and reinforce the theoretical ideas taught in the text. The text and labs combine to make students technically proficient and to answer the age-old question, "When am I going to use this?

Set Theory and Logic

Set Theory and Logic PDF Author: Robert R. Stoll
Publisher: Courier Corporation
ISBN: 0486139646
Category : Mathematics
Languages : en
Pages : 516

Get Book Here

Book Description
Explores sets and relations, the natural number sequence and its generalization, extension of natural numbers to real numbers, logic, informal axiomatic mathematics, Boolean algebras, informal axiomatic set theory, several algebraic theories, and 1st-order theories.

Set Theory And Foundations Of Mathematics: An Introduction To Mathematical Logic - Volume I: Set Theory

Set Theory And Foundations Of Mathematics: An Introduction To Mathematical Logic - Volume I: Set Theory PDF Author: Douglas Cenzer
Publisher: World Scientific
ISBN: 9811201943
Category : Mathematics
Languages : en
Pages : 222

Get Book Here

Book Description
This book provides an introduction to axiomatic set theory and descriptive set theory. It is written for the upper level undergraduate or beginning graduate students to help them prepare for advanced study in set theory and mathematical logic as well as other areas of mathematics, such as analysis, topology, and algebra.The book is designed as a flexible and accessible text for a one-semester introductory course in set theory, where the existing alternatives may be more demanding or specialized. Readers will learn the universally accepted basis of the field, with several popular topics added as an option. Pointers to more advanced study are scattered throughout the text.

Topology Via Logic

Topology Via Logic PDF Author: Steven Vickers
Publisher: Cambridge University Press
ISBN: 9780521576512
Category : Computers
Languages : en
Pages : 224

Get Book Here

Book Description
Now in paperback, Topology via Logic is an advanced textbook on topology for computer scientists. Based on a course given by the author to postgraduate students of computer science at Imperial College, it has three unusual features. First, the introduction is from the locale viewpoint, motivated by the logic of finite observations: this provides a more direct approach than the traditional one based on abstracting properties of open sets in the real line. Second, the methods of locale theory are freely exploited. Third, there is substantial discussion of some computer science applications. Although books on topology aimed at mathematics exist, no book has been written specifically for computer scientists. As computer scientists become more aware of the mathematical foundations of their discipline, it is appropriate that such topics are presented in a form of direct relevance and applicability. This book goes some way towards bridging the gap.

Category Theory in Context

Category Theory in Context PDF Author: Emily Riehl
Publisher: Courier Dover Publications
ISBN: 0486820807
Category : Mathematics
Languages : en
Pages : 273

Get Book Here

Book Description
Introduction to concepts of category theory — categories, functors, natural transformations, the Yoneda lemma, limits and colimits, adjunctions, monads — revisits a broad range of mathematical examples from the categorical perspective. 2016 edition.