Author: Sergei Kurgalin
Publisher: Springer Nature
ISBN: 3030615413
Category : Computers
Languages : en
Pages : 429
Book Description
This book teaches algebra and geometry. The authors dedicate chapters to the key issues of matrices, linear equations, matrix algorithms, vector spaces, lines, planes, second-order curves, and elliptic curves. The text is supported throughout with problems, and the authors have included source code in Python in the book. The book is suitable for advanced undergraduate and graduate students in computer science.
Algebra and Geometry with Python
Author: Sergei Kurgalin
Publisher: Springer Nature
ISBN: 3030615413
Category : Computers
Languages : en
Pages : 429
Book Description
This book teaches algebra and geometry. The authors dedicate chapters to the key issues of matrices, linear equations, matrix algorithms, vector spaces, lines, planes, second-order curves, and elliptic curves. The text is supported throughout with problems, and the authors have included source code in Python in the book. The book is suitable for advanced undergraduate and graduate students in computer science.
Publisher: Springer Nature
ISBN: 3030615413
Category : Computers
Languages : en
Pages : 429
Book Description
This book teaches algebra and geometry. The authors dedicate chapters to the key issues of matrices, linear equations, matrix algorithms, vector spaces, lines, planes, second-order curves, and elliptic curves. The text is supported throughout with problems, and the authors have included source code in Python in the book. The book is suitable for advanced undergraduate and graduate students in computer science.
Doing Math with Python
Author: Amit Saha
Publisher: No Starch Press
ISBN: 1593277199
Category : Computers
Languages : en
Pages : 265
Book Description
Doing Math with Python shows you how to use Python to delve into high school–level math topics like statistics, geometry, probability, and calculus. You’ll start with simple projects, like a factoring program and a quadratic-equation solver, and then create more complex projects once you’ve gotten the hang of things. Along the way, you’ll discover new ways to explore math and gain valuable programming skills that you’ll use throughout your study of math and computer science. Learn how to: –Describe your data with statistics, and visualize it with line graphs, bar charts, and scatter plots –Explore set theory and probability with programs for coin flips, dicing, and other games of chance –Solve algebra problems using Python’s symbolic math functions –Draw geometric shapes and explore fractals like the Barnsley fern, the Sierpinski triangle, and the Mandelbrot set –Write programs to find derivatives and integrate functions Creative coding challenges and applied examples help you see how you can put your new math and coding skills into practice. You’ll write an inequality solver, plot gravity’s effect on how far a bullet will travel, shuffle a deck of cards, estimate the area of a circle by throwing 100,000 "darts" at a board, explore the relationship between the Fibonacci sequence and the golden ratio, and more. Whether you’re interested in math but have yet to dip into programming or you’re a teacher looking to bring programming into the classroom, you’ll find that Python makes programming easy and practical. Let Python handle the grunt work while you focus on the math. Uses Python 3
Publisher: No Starch Press
ISBN: 1593277199
Category : Computers
Languages : en
Pages : 265
Book Description
Doing Math with Python shows you how to use Python to delve into high school–level math topics like statistics, geometry, probability, and calculus. You’ll start with simple projects, like a factoring program and a quadratic-equation solver, and then create more complex projects once you’ve gotten the hang of things. Along the way, you’ll discover new ways to explore math and gain valuable programming skills that you’ll use throughout your study of math and computer science. Learn how to: –Describe your data with statistics, and visualize it with line graphs, bar charts, and scatter plots –Explore set theory and probability with programs for coin flips, dicing, and other games of chance –Solve algebra problems using Python’s symbolic math functions –Draw geometric shapes and explore fractals like the Barnsley fern, the Sierpinski triangle, and the Mandelbrot set –Write programs to find derivatives and integrate functions Creative coding challenges and applied examples help you see how you can put your new math and coding skills into practice. You’ll write an inequality solver, plot gravity’s effect on how far a bullet will travel, shuffle a deck of cards, estimate the area of a circle by throwing 100,000 "darts" at a board, explore the relationship between the Fibonacci sequence and the golden ratio, and more. Whether you’re interested in math but have yet to dip into programming or you’re a teacher looking to bring programming into the classroom, you’ll find that Python makes programming easy and practical. Let Python handle the grunt work while you focus on the math. Uses Python 3
Math Adventures with Python
Author: Peter Farrell
Publisher: No Starch Press
ISBN: 1593278683
Category : Computers
Languages : en
Pages : 305
Book Description
Learn math by getting creative with code! Use the Python programming language to transform learning high school-level math topics like algebra, geometry, trigonometry, and calculus! Math Adventures with Python will show you how to harness the power of programming to keep math relevant and fun. With the aid of the Python programming language, you'll learn how to visualize solutions to a range of math problems as you use code to explore key mathematical concepts like algebra, trigonometry, matrices, and cellular automata. Once you've learned the programming basics like loops and variables, you'll write your own programs to solve equations quickly, make cool things like an interactive rainbow grid, and automate tedious tasks like factoring numbers and finding square roots. You'll learn how to write functions to draw and manipulate shapes, create oscillating sine waves, and solve equations graphically. You'll also learn how to: - Draw and transform 2D and 3D graphics with matrices - Make colorful designs like the Mandelbrot and Julia sets with complex numbers - Use recursion to create fractals like the Koch snowflake and the Sierpinski triangle - Generate virtual sheep that graze on grass and multiply autonomously - Crack secret codes using genetic algorithms As you work through the book's numerous examples and increasingly challenging exercises, you'll code your own solutions, create beautiful visualizations, and see just how much more fun math can be!
Publisher: No Starch Press
ISBN: 1593278683
Category : Computers
Languages : en
Pages : 305
Book Description
Learn math by getting creative with code! Use the Python programming language to transform learning high school-level math topics like algebra, geometry, trigonometry, and calculus! Math Adventures with Python will show you how to harness the power of programming to keep math relevant and fun. With the aid of the Python programming language, you'll learn how to visualize solutions to a range of math problems as you use code to explore key mathematical concepts like algebra, trigonometry, matrices, and cellular automata. Once you've learned the programming basics like loops and variables, you'll write your own programs to solve equations quickly, make cool things like an interactive rainbow grid, and automate tedious tasks like factoring numbers and finding square roots. You'll learn how to write functions to draw and manipulate shapes, create oscillating sine waves, and solve equations graphically. You'll also learn how to: - Draw and transform 2D and 3D graphics with matrices - Make colorful designs like the Mandelbrot and Julia sets with complex numbers - Use recursion to create fractals like the Koch snowflake and the Sierpinski triangle - Generate virtual sheep that graze on grass and multiply autonomously - Crack secret codes using genetic algorithms As you work through the book's numerous examples and increasingly challenging exercises, you'll code your own solutions, create beautiful visualizations, and see just how much more fun math can be!
Math for Programmers
Author: Paul Orland
Publisher: Manning
ISBN: 1617295353
Category : Computers
Languages : en
Pages : 686
Book Description
Explore important mathematical concepts through hands-on coding. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest programming fields. About the technology Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code! About the book In Math for Programmers you’ll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you’ll master the key Python libraries used to turn them into real-world software applications. What's inside Vector geometry for computer graphics Matrices and linear transformations Core concepts from calculus Simulation and optimization Image and audio processing Machine learning algorithms for regression and classification About the reader For programmers with basic skills in algebra. About the author Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land. Table of Contents 1 Learning math with code PART I - VECTORS AND GRAPHICS 2 Drawing with 2D vectors 3 Ascending to the 3D world 4 Transforming vectors and graphics 5 Computing transformations with matrices 6 Generalizing to higher dimensions 7 Solving systems of linear equations PART 2 - CALCULUS AND PHYSICAL SIMULATION 8 Understanding rates of change 9 Simulating moving objects 10 Working with symbolic expressions 11 Simulating force fields 12 Optimizing a physical system 13 Analyzing sound waves with a Fourier series PART 3 - MACHINE LEARNING APPLICATIONS 14 Fitting functions to data 15 Classifying data with logistic regression 16 Training neural networks
Publisher: Manning
ISBN: 1617295353
Category : Computers
Languages : en
Pages : 686
Book Description
Explore important mathematical concepts through hands-on coding. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. To score a job in data science, machine learning, computer graphics, and cryptography, you need to bring strong math skills to the party. Math for Programmers teaches the math you need for these hot careers, concentrating on what you need to know as a developer. Filled with lots of helpful graphics and more than 200 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest programming fields. About the technology Skip the mathematical jargon: This one-of-a-kind book uses Python to teach the math you need to build games, simulations, 3D graphics, and machine learning algorithms. Discover how algebra and calculus come alive when you see them in code! About the book In Math for Programmers you’ll explore important mathematical concepts through hands-on coding. Filled with graphics and more than 300 exercises and mini-projects, this book unlocks the door to interesting–and lucrative!–careers in some of today’s hottest fields. As you tackle the basics of linear algebra, calculus, and machine learning, you’ll master the key Python libraries used to turn them into real-world software applications. What's inside Vector geometry for computer graphics Matrices and linear transformations Core concepts from calculus Simulation and optimization Image and audio processing Machine learning algorithms for regression and classification About the reader For programmers with basic skills in algebra. About the author Paul Orland is a programmer, software entrepreneur, and math enthusiast. He is co-founder of Tachyus, a start-up building predictive analytics software for the energy industry. You can find him online at www.paulor.land. Table of Contents 1 Learning math with code PART I - VECTORS AND GRAPHICS 2 Drawing with 2D vectors 3 Ascending to the 3D world 4 Transforming vectors and graphics 5 Computing transformations with matrices 6 Generalizing to higher dimensions 7 Solving systems of linear equations PART 2 - CALCULUS AND PHYSICAL SIMULATION 8 Understanding rates of change 9 Simulating moving objects 10 Working with symbolic expressions 11 Simulating force fields 12 Optimizing a physical system 13 Analyzing sound waves with a Fourier series PART 3 - MACHINE LEARNING APPLICATIONS 14 Fitting functions to data 15 Classifying data with logistic regression 16 Training neural networks
Applying Math with Python
Author: Sam Morley
Publisher: Packt Publishing Ltd
ISBN: 1838986561
Category : Computers
Languages : en
Pages : 353
Book Description
Discover easy-to-follow solutions and techniques to help you to implement applied mathematical concepts such as probability, calculus, and equations using Python's numeric and scientific libraries Key FeaturesCompute complex mathematical problems using programming logic with the help of step-by-step recipesLearn how to utilize Python's libraries for computation, mathematical modeling, and statisticsDiscover simple yet effective techniques for solving mathematical equations and apply them in real-world statisticsBook Description Python, one of the world's most popular programming languages, has a number of powerful packages to help you tackle complex mathematical problems in a simple and efficient way. These core capabilities help programmers pave the way for building exciting applications in various domains, such as machine learning and data science, using knowledge in the computational mathematics domain. The book teaches you how to solve problems faced in a wide variety of mathematical fields, including calculus, probability, statistics and data science, graph theory, optimization, and geometry. You'll start by developing core skills and learning about packages covered in Python's scientific stack, including NumPy, SciPy, and Matplotlib. As you advance, you'll get to grips with more advanced topics of calculus, probability, and networks (graph theory). After you gain a solid understanding of these topics, you'll discover Python's applications in data science and statistics, forecasting, geometry, and optimization. The final chapters will take you through a collection of miscellaneous problems, including working with specific data formats and accelerating code. By the end of this book, you'll have an arsenal of practical coding solutions that can be used and modified to solve a wide range of practical problems in computational mathematics and data science. What you will learnGet familiar with basic packages, tools, and libraries in Python for solving mathematical problemsExplore various techniques that will help you to solve computational mathematical problemsUnderstand the core concepts of applied mathematics and how you can apply them in computer scienceDiscover how to choose the most suitable package, tool, or technique to solve a certain problemImplement basic mathematical plotting, change plot styles, and add labels to the plots using MatplotlibGet to grips with probability theory with the Bayesian inference and Markov Chain Monte Carlo (MCMC) methodsWho this book is for This book is for professional programmers and students looking to solve mathematical problems computationally using Python. Advanced mathematics knowledge is not a requirement, but a basic knowledge of mathematics will help you to get the most out of this book. The book assumes familiarity with Python concepts of data structures.
Publisher: Packt Publishing Ltd
ISBN: 1838986561
Category : Computers
Languages : en
Pages : 353
Book Description
Discover easy-to-follow solutions and techniques to help you to implement applied mathematical concepts such as probability, calculus, and equations using Python's numeric and scientific libraries Key FeaturesCompute complex mathematical problems using programming logic with the help of step-by-step recipesLearn how to utilize Python's libraries for computation, mathematical modeling, and statisticsDiscover simple yet effective techniques for solving mathematical equations and apply them in real-world statisticsBook Description Python, one of the world's most popular programming languages, has a number of powerful packages to help you tackle complex mathematical problems in a simple and efficient way. These core capabilities help programmers pave the way for building exciting applications in various domains, such as machine learning and data science, using knowledge in the computational mathematics domain. The book teaches you how to solve problems faced in a wide variety of mathematical fields, including calculus, probability, statistics and data science, graph theory, optimization, and geometry. You'll start by developing core skills and learning about packages covered in Python's scientific stack, including NumPy, SciPy, and Matplotlib. As you advance, you'll get to grips with more advanced topics of calculus, probability, and networks (graph theory). After you gain a solid understanding of these topics, you'll discover Python's applications in data science and statistics, forecasting, geometry, and optimization. The final chapters will take you through a collection of miscellaneous problems, including working with specific data formats and accelerating code. By the end of this book, you'll have an arsenal of practical coding solutions that can be used and modified to solve a wide range of practical problems in computational mathematics and data science. What you will learnGet familiar with basic packages, tools, and libraries in Python for solving mathematical problemsExplore various techniques that will help you to solve computational mathematical problemsUnderstand the core concepts of applied mathematics and how you can apply them in computer scienceDiscover how to choose the most suitable package, tool, or technique to solve a certain problemImplement basic mathematical plotting, change plot styles, and add labels to the plots using MatplotlibGet to grips with probability theory with the Bayesian inference and Markov Chain Monte Carlo (MCMC) methodsWho this book is for This book is for professional programmers and students looking to solve mathematical problems computationally using Python. Advanced mathematics knowledge is not a requirement, but a basic knowledge of mathematics will help you to get the most out of this book. The book assumes familiarity with Python concepts of data structures.
Geometric Algebra for Computer Science
Author: Leo Dorst
Publisher: Elsevier
ISBN: 0080553109
Category : Juvenile Nonfiction
Languages : en
Pages : 664
Book Description
Until recently, almost all of the interactions between objects in virtual 3D worlds have been based on calculations performed using linear algebra. Linear algebra relies heavily on coordinates, however, which can make many geometric programming tasks very specific and complex-often a lot of effort is required to bring about even modest performance enhancements. Although linear algebra is an efficient way to specify low-level computations, it is not a suitable high-level language for geometric programming. Geometric Algebra for Computer Science presents a compelling alternative to the limitations of linear algebra. Geometric algebra, or GA, is a compact, time-effective, and performance-enhancing way to represent the geometry of 3D objects in computer programs. In this book you will find an introduction to GA that will give you a strong grasp of its relationship to linear algebra and its significance for your work. You will learn how to use GA to represent objects and perform geometric operations on them. And you will begin mastering proven techniques for making GA an integral part of your applications in a way that simplifies your code without slowing it down. * The first book on Geometric Algebra for programmers in computer graphics and entertainment computing * Written by leaders in the field providing essential information on this new technique for 3D graphics * This full colour book includes a website with GAViewer, a program to experiment with GA
Publisher: Elsevier
ISBN: 0080553109
Category : Juvenile Nonfiction
Languages : en
Pages : 664
Book Description
Until recently, almost all of the interactions between objects in virtual 3D worlds have been based on calculations performed using linear algebra. Linear algebra relies heavily on coordinates, however, which can make many geometric programming tasks very specific and complex-often a lot of effort is required to bring about even modest performance enhancements. Although linear algebra is an efficient way to specify low-level computations, it is not a suitable high-level language for geometric programming. Geometric Algebra for Computer Science presents a compelling alternative to the limitations of linear algebra. Geometric algebra, or GA, is a compact, time-effective, and performance-enhancing way to represent the geometry of 3D objects in computer programs. In this book you will find an introduction to GA that will give you a strong grasp of its relationship to linear algebra and its significance for your work. You will learn how to use GA to represent objects and perform geometric operations on them. And you will begin mastering proven techniques for making GA an integral part of your applications in a way that simplifies your code without slowing it down. * The first book on Geometric Algebra for programmers in computer graphics and entertainment computing * Written by leaders in the field providing essential information on this new technique for 3D graphics * This full colour book includes a website with GAViewer, a program to experiment with GA
Ideals, Varieties, and Algorithms
Author: David Cox
Publisher: Springer Science & Business Media
ISBN: 1475721811
Category : Mathematics
Languages : en
Pages : 523
Book Description
Written at a level appropriate to undergraduates, this book covers such topics as the Hilbert Basis Theorem, the Nullstellensatz, invariant theory, projective geometry, and dimension theory. Contains a new section on Axiom and an update about MAPLE, Mathematica and REDUCE.
Publisher: Springer Science & Business Media
ISBN: 1475721811
Category : Mathematics
Languages : en
Pages : 523
Book Description
Written at a level appropriate to undergraduates, this book covers such topics as the Hilbert Basis Theorem, the Nullstellensatz, invariant theory, projective geometry, and dimension theory. Contains a new section on Axiom and an update about MAPLE, Mathematica and REDUCE.
Linear Algebra, Signal Processing, and Wavelets - A Unified Approach
Author: Øyvind Ryan
Publisher: Springer
ISBN: 3030018121
Category : Mathematics
Languages : en
Pages : 381
Book Description
This book offers a user friendly, hands-on, and systematic introduction to applied and computational harmonic analysis: to Fourier analysis, signal processing and wavelets; and to their interplay and applications. The approach is novel, and the book can be used in undergraduate courses, for example, following a first course in linear algebra, but is also suitable for use in graduate level courses. The book will benefit anyone with a basic background in linear algebra. It defines fundamental concepts in signal processing and wavelet theory, assuming only a familiarity with elementary linear algebra. No background in signal processing is needed. Additionally, the book demonstrates in detail why linear algebra is often the best way to go. Those with only a signal processing background are also introduced to the world of linear algebra, although a full course is recommended. The book comes in two versions: one based on MATLAB, and one on Python, demonstrating the feasibility and applications of both approaches. Most of the MATLAB code is available interactively. The applications mainly involve sound and images. The book also includes a rich set of exercises, many of which are of a computational nature.
Publisher: Springer
ISBN: 3030018121
Category : Mathematics
Languages : en
Pages : 381
Book Description
This book offers a user friendly, hands-on, and systematic introduction to applied and computational harmonic analysis: to Fourier analysis, signal processing and wavelets; and to their interplay and applications. The approach is novel, and the book can be used in undergraduate courses, for example, following a first course in linear algebra, but is also suitable for use in graduate level courses. The book will benefit anyone with a basic background in linear algebra. It defines fundamental concepts in signal processing and wavelet theory, assuming only a familiarity with elementary linear algebra. No background in signal processing is needed. Additionally, the book demonstrates in detail why linear algebra is often the best way to go. Those with only a signal processing background are also introduced to the world of linear algebra, although a full course is recommended. The book comes in two versions: one based on MATLAB, and one on Python, demonstrating the feasibility and applications of both approaches. Most of the MATLAB code is available interactively. The applications mainly involve sound and images. The book also includes a rich set of exercises, many of which are of a computational nature.
Linear Algebra Coding with Python
Author: Hyun-Seok Son
Publisher: Hyun-Seok Son
ISBN:
Category : Art
Languages : en
Pages : 316
Book Description
Python is one of the most popular languages for data analysis and prediction. What's more, tensorflow and torch, useful tools of recent deep learning, are fully implemented by Python. The basic form of data in these languages is an array, created by Python's important package numpy. In particular, arrays are the basis of data science because they have structures of vectors and matrices that give the meaning of direction and magnitude to each value in the data set. The matrix structure allows transformation to a simple form without losing the basic characteristics of a vast data set. These transformations are useful for efficient processing of data and for finding implicit characteristics. Linear Algebra, a field that provides a basic theory of vectors and matrices, provides many algorithms to increase the accuracy and speed of computation for analyzing data and to discover the characteristics of a data set. These algorithms are very useful for understanding the computing process of probability, statistics and the learning machine. This book introduces many basics of linear algebra using Python packages numpy, sympy, and so on. Chapters 1 and 2 introduce the creation and characteristics of vectors and matrices. Chapter 3 describes the linear system(linear combination) through the process finding the solution in a system of simultaneous equations. Vector space, a concept introduced in Chapter 4, is used to infer the collective characteristics and relationships of each vector of a linear system. Chapter 5 introduces the coordinate system to represent the linear system geometrically. Chapter 6 introduces the process of transforming while maintaining basic characteristics such as vectors and matrices. Finally, Chapter 7 describes several ways to decompose the original form into a simple form. In this process, we use a variety of Python functions.
Publisher: Hyun-Seok Son
ISBN:
Category : Art
Languages : en
Pages : 316
Book Description
Python is one of the most popular languages for data analysis and prediction. What's more, tensorflow and torch, useful tools of recent deep learning, are fully implemented by Python. The basic form of data in these languages is an array, created by Python's important package numpy. In particular, arrays are the basis of data science because they have structures of vectors and matrices that give the meaning of direction and magnitude to each value in the data set. The matrix structure allows transformation to a simple form without losing the basic characteristics of a vast data set. These transformations are useful for efficient processing of data and for finding implicit characteristics. Linear Algebra, a field that provides a basic theory of vectors and matrices, provides many algorithms to increase the accuracy and speed of computation for analyzing data and to discover the characteristics of a data set. These algorithms are very useful for understanding the computing process of probability, statistics and the learning machine. This book introduces many basics of linear algebra using Python packages numpy, sympy, and so on. Chapters 1 and 2 introduce the creation and characteristics of vectors and matrices. Chapter 3 describes the linear system(linear combination) through the process finding the solution in a system of simultaneous equations. Vector space, a concept introduced in Chapter 4, is used to infer the collective characteristics and relationships of each vector of a linear system. Chapter 5 introduces the coordinate system to represent the linear system geometrically. Chapter 6 introduces the process of transforming while maintaining basic characteristics such as vectors and matrices. Finally, Chapter 7 describes several ways to decompose the original form into a simple form. In this process, we use a variety of Python functions.
Geometric Algebra with Applications in Engineering
Author: Christian Perwass
Publisher: Springer Science & Business Media
ISBN: 3540890688
Category : Computers
Languages : en
Pages : 389
Book Description
The application of geometric algebra to the engineering sciences is a young, active subject of research. The promise of this field is that the mathematical structure of geometric algebra together with its descriptive power will result in intuitive and more robust algorithms. This book examines all aspects essential for a successful application of geometric algebra: the theoretical foundations, the representation of geometric constraints, and the numerical estimation from uncertain data. Formally, the book consists of two parts: theoretical foundations and applications. The first part includes chapters on random variables in geometric algebra, linear estimation methods that incorporate the uncertainty of algebraic elements, and the representation of geometry in Euclidean, projective, conformal and conic space. The second part is dedicated to applications of geometric algebra, which include uncertain geometry and transformations, a generalized camera model, and pose estimation. Graduate students, scientists, researchers and practitioners will benefit from this book. The examples given in the text are mostly recent research results, so practitioners can see how to apply geometric algebra to real tasks, while researchers note starting points for future investigations. Students will profit from the detailed introduction to geometric algebra, while the text is supported by the author's visualization software, CLUCalc, freely available online, and a website that includes downloadable exercises, slides and tutorials.
Publisher: Springer Science & Business Media
ISBN: 3540890688
Category : Computers
Languages : en
Pages : 389
Book Description
The application of geometric algebra to the engineering sciences is a young, active subject of research. The promise of this field is that the mathematical structure of geometric algebra together with its descriptive power will result in intuitive and more robust algorithms. This book examines all aspects essential for a successful application of geometric algebra: the theoretical foundations, the representation of geometric constraints, and the numerical estimation from uncertain data. Formally, the book consists of two parts: theoretical foundations and applications. The first part includes chapters on random variables in geometric algebra, linear estimation methods that incorporate the uncertainty of algebraic elements, and the representation of geometry in Euclidean, projective, conformal and conic space. The second part is dedicated to applications of geometric algebra, which include uncertain geometry and transformations, a generalized camera model, and pose estimation. Graduate students, scientists, researchers and practitioners will benefit from this book. The examples given in the text are mostly recent research results, so practitioners can see how to apply geometric algebra to real tasks, while researchers note starting points for future investigations. Students will profit from the detailed introduction to geometric algebra, while the text is supported by the author's visualization software, CLUCalc, freely available online, and a website that includes downloadable exercises, slides and tutorials.