Author: Arij Bouzelmate
Publisher: Springer Nature
ISBN: 303167264X
Category :
Languages : en
Pages : 161
Book Description
Algebra, Analysis, Modelling and Optimization
Author: Arij Bouzelmate
Publisher: Springer Nature
ISBN: 303167264X
Category :
Languages : en
Pages : 161
Book Description
Publisher: Springer Nature
ISBN: 303167264X
Category :
Languages : en
Pages : 161
Book Description
Mathematical Optimization and Economic Analysis
Author: Mikulás Luptácik
Publisher: Springer Science & Business Media
ISBN: 0387895523
Category : Mathematics
Languages : en
Pages : 299
Book Description
"Mathematical Optimization and Economic Analysis" is a self-contained introduction to various optimization techniques used in economic modeling and analysis such as geometric, linear, and convex programming and data envelopment analysis. Through a systematic approach, this book demonstrates the usefulness of these mathematical tools in quantitative and qualitative economic analysis. The book presents specific examples to demonstrate each technique’s advantages and applicability as well as numerous applications of these techniques to industrial economics, regulatory economics, trade policy, economic sustainability, production planning, and environmental policy. Key Features include: - A detailed presentation of both single-objective and multiobjective optimization; - An in-depth exposition of various applied optimization problems; - Implementation of optimization tools to improve the accuracy of various economic models; - Extensive resources suggested for further reading. This book is intended for graduate and postgraduate students studying quantitative economics, as well as economics researchers and applied mathematicians. Requirements include a basic knowledge of calculus and linear algebra, and a familiarity with economic modeling.
Publisher: Springer Science & Business Media
ISBN: 0387895523
Category : Mathematics
Languages : en
Pages : 299
Book Description
"Mathematical Optimization and Economic Analysis" is a self-contained introduction to various optimization techniques used in economic modeling and analysis such as geometric, linear, and convex programming and data envelopment analysis. Through a systematic approach, this book demonstrates the usefulness of these mathematical tools in quantitative and qualitative economic analysis. The book presents specific examples to demonstrate each technique’s advantages and applicability as well as numerous applications of these techniques to industrial economics, regulatory economics, trade policy, economic sustainability, production planning, and environmental policy. Key Features include: - A detailed presentation of both single-objective and multiobjective optimization; - An in-depth exposition of various applied optimization problems; - Implementation of optimization tools to improve the accuracy of various economic models; - Extensive resources suggested for further reading. This book is intended for graduate and postgraduate students studying quantitative economics, as well as economics researchers and applied mathematicians. Requirements include a basic knowledge of calculus and linear algebra, and a familiarity with economic modeling.
Optimization Models
Author: Giuseppe C. Calafiore
Publisher: Cambridge University Press
ISBN: 1107050871
Category : Business & Economics
Languages : en
Pages : 651
Book Description
This accessible textbook demonstrates how to recognize, simplify, model and solve optimization problems - and apply these principles to new projects.
Publisher: Cambridge University Press
ISBN: 1107050871
Category : Business & Economics
Languages : en
Pages : 651
Book Description
This accessible textbook demonstrates how to recognize, simplify, model and solve optimization problems - and apply these principles to new projects.
Modeling, Simulation, and Optimization of Supply Chains
Author: Ciro D'Apice
Publisher: SIAM
ISBN: 0898717000
Category : Mathematics
Languages : en
Pages : 209
Book Description
This book offers a state-of-the-art introduction to the mathematical theory of supply chain networks, focusing on those described by partial differential equations. The authors discuss modeling of complex supply networks as well as their mathematical theory, explore modeling, simulation, and optimization of some of the discussed models, and present analytical and numerical results on optimization problems. Real-world examples are given to demonstrate the applicability of the presented approaches. Graduate students and researchers who are interested in the theory of supply chain networks described by partial differential equations will find this book useful. It can also be used in advanced graduate-level courses on modeling of physical phenomena as well as introductory courses on supply chain theory.
Publisher: SIAM
ISBN: 0898717000
Category : Mathematics
Languages : en
Pages : 209
Book Description
This book offers a state-of-the-art introduction to the mathematical theory of supply chain networks, focusing on those described by partial differential equations. The authors discuss modeling of complex supply networks as well as their mathematical theory, explore modeling, simulation, and optimization of some of the discussed models, and present analytical and numerical results on optimization problems. Real-world examples are given to demonstrate the applicability of the presented approaches. Graduate students and researchers who are interested in the theory of supply chain networks described by partial differential equations will find this book useful. It can also be used in advanced graduate-level courses on modeling of physical phenomena as well as introductory courses on supply chain theory.
Linear Algebra and Optimization for Machine Learning
Author: Charu C. Aggarwal
Publisher: Springer Nature
ISBN: 3030403440
Category : Computers
Languages : en
Pages : 507
Book Description
This textbook introduces linear algebra and optimization in the context of machine learning. Examples and exercises are provided throughout the book. A solution manual for the exercises at the end of each chapter is available to teaching instructors. This textbook targets graduate level students and professors in computer science, mathematics and data science. Advanced undergraduate students can also use this textbook. The chapters for this textbook are organized as follows: 1. Linear algebra and its applications: The chapters focus on the basics of linear algebra together with their common applications to singular value decomposition, matrix factorization, similarity matrices (kernel methods), and graph analysis. Numerous machine learning applications have been used as examples, such as spectral clustering, kernel-based classification, and outlier detection. The tight integration of linear algebra methods with examples from machine learning differentiates this book from generic volumes on linear algebra. The focus is clearly on the most relevant aspects of linear algebra for machine learning and to teach readers how to apply these concepts. 2. Optimization and its applications: Much of machine learning is posed as an optimization problem in which we try to maximize the accuracy of regression and classification models. The “parent problem” of optimization-centric machine learning is least-squares regression. Interestingly, this problem arises in both linear algebra and optimization, and is one of the key connecting problems of the two fields. Least-squares regression is also the starting point for support vector machines, logistic regression, and recommender systems. Furthermore, the methods for dimensionality reduction and matrix factorization also require the development of optimization methods. A general view of optimization in computational graphs is discussed together with its applications to back propagation in neural networks. A frequent challenge faced by beginners in machine learning is the extensive background required in linear algebra and optimization. One problem is that the existing linear algebra and optimization courses are not specific to machine learning; therefore, one would typically have to complete more course material than is necessary to pick up machine learning. Furthermore, certain types of ideas and tricks from optimization and linear algebra recur more frequently in machine learning than other application-centric settings. Therefore, there is significant value in developing a view of linear algebra and optimization that is better suited to the specific perspective of machine learning.
Publisher: Springer Nature
ISBN: 3030403440
Category : Computers
Languages : en
Pages : 507
Book Description
This textbook introduces linear algebra and optimization in the context of machine learning. Examples and exercises are provided throughout the book. A solution manual for the exercises at the end of each chapter is available to teaching instructors. This textbook targets graduate level students and professors in computer science, mathematics and data science. Advanced undergraduate students can also use this textbook. The chapters for this textbook are organized as follows: 1. Linear algebra and its applications: The chapters focus on the basics of linear algebra together with their common applications to singular value decomposition, matrix factorization, similarity matrices (kernel methods), and graph analysis. Numerous machine learning applications have been used as examples, such as spectral clustering, kernel-based classification, and outlier detection. The tight integration of linear algebra methods with examples from machine learning differentiates this book from generic volumes on linear algebra. The focus is clearly on the most relevant aspects of linear algebra for machine learning and to teach readers how to apply these concepts. 2. Optimization and its applications: Much of machine learning is posed as an optimization problem in which we try to maximize the accuracy of regression and classification models. The “parent problem” of optimization-centric machine learning is least-squares regression. Interestingly, this problem arises in both linear algebra and optimization, and is one of the key connecting problems of the two fields. Least-squares regression is also the starting point for support vector machines, logistic regression, and recommender systems. Furthermore, the methods for dimensionality reduction and matrix factorization also require the development of optimization methods. A general view of optimization in computational graphs is discussed together with its applications to back propagation in neural networks. A frequent challenge faced by beginners in machine learning is the extensive background required in linear algebra and optimization. One problem is that the existing linear algebra and optimization courses are not specific to machine learning; therefore, one would typically have to complete more course material than is necessary to pick up machine learning. Furthermore, certain types of ideas and tricks from optimization and linear algebra recur more frequently in machine learning than other application-centric settings. Therefore, there is significant value in developing a view of linear algebra and optimization that is better suited to the specific perspective of machine learning.
Aimms Optimization Modeling
Author: Johannes Bisschop
Publisher: Lulu.com
ISBN: 1847539122
Category : Computers
Languages : en
Pages : 318
Book Description
The AIMMS Optimization Modeling book provides not only an introduction to modeling but also a suite of worked examples. It is aimed at users who are new to modeling and those who have limited modeling experience. Both the basic concepts of optimization modeling and more advanced modeling techniques are discussed. The Optimization Modeling book is AIMMS version independent.
Publisher: Lulu.com
ISBN: 1847539122
Category : Computers
Languages : en
Pages : 318
Book Description
The AIMMS Optimization Modeling book provides not only an introduction to modeling but also a suite of worked examples. It is aimed at users who are new to modeling and those who have limited modeling experience. Both the basic concepts of optimization modeling and more advanced modeling techniques are discussed. The Optimization Modeling book is AIMMS version independent.
Analysis, Modelling, Optimization, and Numerical Techniques
Author: Gerard Olivar Tost
Publisher: Springer
ISBN: 3319125834
Category : Mathematics
Languages : en
Pages : 373
Book Description
This book highlights recent compelling research results and trends in various aspects of contemporary mathematics, emphasizing applicabilitions to real-world situations. The chapters present exciting new findings and developments in situations where mathematical rigor is combined with common sense. A multi-disciplinary approach, both within each chapter and in the volume as a whole, leads to practical insights that may result in a more synthetic understanding of specific global issues as well as their possible solutions. The volume will be of interest not only to experts in mathematics, but also to graduate students, scientists, and practitioners from other fields including physics, biology, geology, management, and medicine.
Publisher: Springer
ISBN: 3319125834
Category : Mathematics
Languages : en
Pages : 373
Book Description
This book highlights recent compelling research results and trends in various aspects of contemporary mathematics, emphasizing applicabilitions to real-world situations. The chapters present exciting new findings and developments in situations where mathematical rigor is combined with common sense. A multi-disciplinary approach, both within each chapter and in the volume as a whole, leads to practical insights that may result in a more synthetic understanding of specific global issues as well as their possible solutions. The volume will be of interest not only to experts in mathematics, but also to graduate students, scientists, and practitioners from other fields including physics, biology, geology, management, and medicine.
Control and Optimization with Differential-Algebraic Constraints
Author: Lorenz T. Biegler
Publisher: SIAM
ISBN: 1611972248
Category : Mathematics
Languages : en
Pages : 351
Book Description
A cutting-edge guide to modelling complex systems with differential-algebraic equations, suitable for applied mathematicians, engineers and computational scientists.
Publisher: SIAM
ISBN: 1611972248
Category : Mathematics
Languages : en
Pages : 351
Book Description
A cutting-edge guide to modelling complex systems with differential-algebraic equations, suitable for applied mathematicians, engineers and computational scientists.
Mathematics of Optimization: How to do Things Faster
Author: Steven J. Miller
Publisher: American Mathematical Soc.
ISBN: 1470441144
Category : Business & Economics
Languages : en
Pages : 353
Book Description
Optimization Theory is an active area of research with numerous applications; many of the books are designed for engineering classes, and thus have an emphasis on problems from such fields. Covering much of the same material, there is less emphasis on coding and detailed applications as the intended audience is more mathematical. There are still several important problems discussed (especially scheduling problems), but there is more emphasis on theory and less on the nuts and bolts of coding. A constant theme of the text is the “why” and the “how” in the subject. Why are we able to do a calculation efficiently? How should we look at a problem? Extensive effort is made to motivate the mathematics and isolate how one can apply ideas/perspectives to a variety of problems. As many of the key algorithms in the subject require too much time or detail to analyze in a first course (such as the run-time of the Simplex Algorithm), there are numerous comparisons to simpler algorithms which students have either seen or can quickly learn (such as the Euclidean algorithm) to motivate the type of results on run-time savings.
Publisher: American Mathematical Soc.
ISBN: 1470441144
Category : Business & Economics
Languages : en
Pages : 353
Book Description
Optimization Theory is an active area of research with numerous applications; many of the books are designed for engineering classes, and thus have an emphasis on problems from such fields. Covering much of the same material, there is less emphasis on coding and detailed applications as the intended audience is more mathematical. There are still several important problems discussed (especially scheduling problems), but there is more emphasis on theory and less on the nuts and bolts of coding. A constant theme of the text is the “why” and the “how” in the subject. Why are we able to do a calculation efficiently? How should we look at a problem? Extensive effort is made to motivate the mathematics and isolate how one can apply ideas/perspectives to a variety of problems. As many of the key algorithms in the subject require too much time or detail to analyze in a first course (such as the run-time of the Simplex Algorithm), there are numerous comparisons to simpler algorithms which students have either seen or can quickly learn (such as the Euclidean algorithm) to motivate the type of results on run-time savings.
Integer Programming
Author: Laurence A. Wolsey
Publisher: John Wiley & Sons
ISBN: 1119606535
Category : Mathematics
Languages : en
Pages : 336
Book Description
A PRACTICAL GUIDE TO OPTIMIZATION PROBLEMS WITH DISCRETE OR INTEGER VARIABLES, REVISED AND UPDATED The revised second edition of Integer Programming explains in clear and simple terms how to construct custom-made algorithms or use existing commercial software to obtain optimal or near-optimal solutions for a variety of real-world problems. The second edition also includes information on the remarkable progress in the development of mixed integer programming solvers in the 22 years since the first edition of the book appeared. The updated text includes information on the most recent developments in the field such as the much improved preprocessing/presolving and the many new ideas for primal heuristics included in the solvers. The result has been a speed-up of several orders of magnitude. The other major change reflected in the text is the widespread use of decomposition algorithms, in particular column generation (branch-(cut)-and-price) and Benders’ decomposition. The revised second edition: Contains new developments on column generation Offers a new chapter on Benders’ algorithm Includes expanded information on preprocessing, heuristics, and branch-and-cut Presents several basic and extended formulations, for example for fixed cost network flows Also touches on and briefly introduces topics such as non-bipartite matching, the complexity of extended formulations or a good linear program for the implementation of lift-and-project Written for students of integer/mathematical programming in operations research, mathematics, engineering, or computer science, Integer Programming offers an updated edition of the basic text that reflects the most recent developments in the field.
Publisher: John Wiley & Sons
ISBN: 1119606535
Category : Mathematics
Languages : en
Pages : 336
Book Description
A PRACTICAL GUIDE TO OPTIMIZATION PROBLEMS WITH DISCRETE OR INTEGER VARIABLES, REVISED AND UPDATED The revised second edition of Integer Programming explains in clear and simple terms how to construct custom-made algorithms or use existing commercial software to obtain optimal or near-optimal solutions for a variety of real-world problems. The second edition also includes information on the remarkable progress in the development of mixed integer programming solvers in the 22 years since the first edition of the book appeared. The updated text includes information on the most recent developments in the field such as the much improved preprocessing/presolving and the many new ideas for primal heuristics included in the solvers. The result has been a speed-up of several orders of magnitude. The other major change reflected in the text is the widespread use of decomposition algorithms, in particular column generation (branch-(cut)-and-price) and Benders’ decomposition. The revised second edition: Contains new developments on column generation Offers a new chapter on Benders’ algorithm Includes expanded information on preprocessing, heuristics, and branch-and-cut Presents several basic and extended formulations, for example for fixed cost network flows Also touches on and briefly introduces topics such as non-bipartite matching, the complexity of extended formulations or a good linear program for the implementation of lift-and-project Written for students of integer/mathematical programming in operations research, mathematics, engineering, or computer science, Integer Programming offers an updated edition of the basic text that reflects the most recent developments in the field.