Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 363
Book Description
In the project "Airline Passenger Satisfaction Analysis and Prediction Using Machine Learning and Deep Learning with Python," the aim was to analyze and predict passenger satisfaction in the airline industry. The project began with an extensive data exploration phase, wherein the dataset containing various features related to passenger experiences was thoroughly examined. The dataset was then preprocessed, ensuring data cleanliness and preparing it for further analysis. One of the initial steps involved understanding the distribution of categorized features within the dataset. By visualizing the distribution of these features, insights were gained into the prevalence of different categories, providing a preliminary understanding of passenger preferences and experiences. For the prediction aspect, machine learning models were employed, and a Grid Search approach was implemented to fine-tune hyperparameters and optimize model performance. This process allowed the identification of the best-performing model configuration, enhancing the accuracy of passenger satisfaction predictions. The models used are Logistic Regression, Support Vector Machines, K-Nearest Neighbors, Decision Trees, Random Forests, Gradient Boosting, Extreme Gradient Boosting, Light Gradient Boosting. Going beyond traditional machine learning, a Deep Learning approach was introduced using an Artificial Neural Network (ANN). This model, designed to capture intricate patterns and relationships within the data, showcased the potential of deep learning for improving predictive accuracy. The evaluation of both machine learning and deep learning models was centered around key metrics. The accuracy score was a primary indicator of model performance, reflecting the ratio of correctly predicted passenger satisfaction outcomes. Additionally, the Classification Report provided a comprehensive overview of precision, recall, and F1-score for each category, shedding light on the model's ability to classify passenger satisfaction levels accurately. Visualizing the results played a pivotal role in the project. The plotted Training and Validation Accuracy and Loss graphs offered insights into the convergence and generalization capabilities of the models. These visualizations helped in understanding potential overfitting or underfitting issues and guided the fine-tuning process. To assess the models' predictive performance, a Confusion Matrix was constructed. This matrix presented a clear breakdown of correct and incorrect predictions, facilitating an understanding of where the model excelled and where it struggled. Furthermore, scatter plots were utilized to visually compare the predicted values against the actual true values, offering a tangible representation of the models' effectiveness. Throughout the project, rigorous data preprocessing and feature engineering were integral to improving model accuracy. Features were appropriately scaled, and categorical variables were transformed using techniques like one-hot encoding, enabling models to efficiently learn from the data. The project also focused on the interpretability of the models, enabling stakeholders to comprehend the factors influencing passenger satisfaction predictions. This interpretability was essential for making informed business decisions based on the model insights. In conclusion, the project showcased a comprehensive approach to analyzing and predicting airline passenger satisfaction. Through meticulous data exploration, feature distribution analysis, machine learning model selection, hyperparameter tuning, and deep learning implementation, the project provided valuable insights for the airline industry. By utilizing a combination of machine learning and deep learning techniques, the project demonstrated a holistic approach to understanding and enhancing passenger experiences and satisfaction levels.
AIRLINE PASSENGER SATISFACTION Analysis and Prediction Using Machine Learning and Deep Learning with Python
Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 363
Book Description
In the project "Airline Passenger Satisfaction Analysis and Prediction Using Machine Learning and Deep Learning with Python," the aim was to analyze and predict passenger satisfaction in the airline industry. The project began with an extensive data exploration phase, wherein the dataset containing various features related to passenger experiences was thoroughly examined. The dataset was then preprocessed, ensuring data cleanliness and preparing it for further analysis. One of the initial steps involved understanding the distribution of categorized features within the dataset. By visualizing the distribution of these features, insights were gained into the prevalence of different categories, providing a preliminary understanding of passenger preferences and experiences. For the prediction aspect, machine learning models were employed, and a Grid Search approach was implemented to fine-tune hyperparameters and optimize model performance. This process allowed the identification of the best-performing model configuration, enhancing the accuracy of passenger satisfaction predictions. The models used are Logistic Regression, Support Vector Machines, K-Nearest Neighbors, Decision Trees, Random Forests, Gradient Boosting, Extreme Gradient Boosting, Light Gradient Boosting. Going beyond traditional machine learning, a Deep Learning approach was introduced using an Artificial Neural Network (ANN). This model, designed to capture intricate patterns and relationships within the data, showcased the potential of deep learning for improving predictive accuracy. The evaluation of both machine learning and deep learning models was centered around key metrics. The accuracy score was a primary indicator of model performance, reflecting the ratio of correctly predicted passenger satisfaction outcomes. Additionally, the Classification Report provided a comprehensive overview of precision, recall, and F1-score for each category, shedding light on the model's ability to classify passenger satisfaction levels accurately. Visualizing the results played a pivotal role in the project. The plotted Training and Validation Accuracy and Loss graphs offered insights into the convergence and generalization capabilities of the models. These visualizations helped in understanding potential overfitting or underfitting issues and guided the fine-tuning process. To assess the models' predictive performance, a Confusion Matrix was constructed. This matrix presented a clear breakdown of correct and incorrect predictions, facilitating an understanding of where the model excelled and where it struggled. Furthermore, scatter plots were utilized to visually compare the predicted values against the actual true values, offering a tangible representation of the models' effectiveness. Throughout the project, rigorous data preprocessing and feature engineering were integral to improving model accuracy. Features were appropriately scaled, and categorical variables were transformed using techniques like one-hot encoding, enabling models to efficiently learn from the data. The project also focused on the interpretability of the models, enabling stakeholders to comprehend the factors influencing passenger satisfaction predictions. This interpretability was essential for making informed business decisions based on the model insights. In conclusion, the project showcased a comprehensive approach to analyzing and predicting airline passenger satisfaction. Through meticulous data exploration, feature distribution analysis, machine learning model selection, hyperparameter tuning, and deep learning implementation, the project provided valuable insights for the airline industry. By utilizing a combination of machine learning and deep learning techniques, the project demonstrated a holistic approach to understanding and enhancing passenger experiences and satisfaction levels.
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 363
Book Description
In the project "Airline Passenger Satisfaction Analysis and Prediction Using Machine Learning and Deep Learning with Python," the aim was to analyze and predict passenger satisfaction in the airline industry. The project began with an extensive data exploration phase, wherein the dataset containing various features related to passenger experiences was thoroughly examined. The dataset was then preprocessed, ensuring data cleanliness and preparing it for further analysis. One of the initial steps involved understanding the distribution of categorized features within the dataset. By visualizing the distribution of these features, insights were gained into the prevalence of different categories, providing a preliminary understanding of passenger preferences and experiences. For the prediction aspect, machine learning models were employed, and a Grid Search approach was implemented to fine-tune hyperparameters and optimize model performance. This process allowed the identification of the best-performing model configuration, enhancing the accuracy of passenger satisfaction predictions. The models used are Logistic Regression, Support Vector Machines, K-Nearest Neighbors, Decision Trees, Random Forests, Gradient Boosting, Extreme Gradient Boosting, Light Gradient Boosting. Going beyond traditional machine learning, a Deep Learning approach was introduced using an Artificial Neural Network (ANN). This model, designed to capture intricate patterns and relationships within the data, showcased the potential of deep learning for improving predictive accuracy. The evaluation of both machine learning and deep learning models was centered around key metrics. The accuracy score was a primary indicator of model performance, reflecting the ratio of correctly predicted passenger satisfaction outcomes. Additionally, the Classification Report provided a comprehensive overview of precision, recall, and F1-score for each category, shedding light on the model's ability to classify passenger satisfaction levels accurately. Visualizing the results played a pivotal role in the project. The plotted Training and Validation Accuracy and Loss graphs offered insights into the convergence and generalization capabilities of the models. These visualizations helped in understanding potential overfitting or underfitting issues and guided the fine-tuning process. To assess the models' predictive performance, a Confusion Matrix was constructed. This matrix presented a clear breakdown of correct and incorrect predictions, facilitating an understanding of where the model excelled and where it struggled. Furthermore, scatter plots were utilized to visually compare the predicted values against the actual true values, offering a tangible representation of the models' effectiveness. Throughout the project, rigorous data preprocessing and feature engineering were integral to improving model accuracy. Features were appropriately scaled, and categorical variables were transformed using techniques like one-hot encoding, enabling models to efficiently learn from the data. The project also focused on the interpretability of the models, enabling stakeholders to comprehend the factors influencing passenger satisfaction predictions. This interpretability was essential for making informed business decisions based on the model insights. In conclusion, the project showcased a comprehensive approach to analyzing and predicting airline passenger satisfaction. Through meticulous data exploration, feature distribution analysis, machine learning model selection, hyperparameter tuning, and deep learning implementation, the project provided valuable insights for the airline industry. By utilizing a combination of machine learning and deep learning techniques, the project demonstrated a holistic approach to understanding and enhancing passenger experiences and satisfaction levels.
ANALYSIS AND PREDICTION PROJECTS USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON
Author: Vivian Siahaan
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 860
Book Description
PROJECT 1: DEFAULT LOAN PREDICTION BASED ON CUSTOMER BEHAVIOR Using Machine Learning and Deep Learning with Python In finance, default is failure to meet the legal obligations (or conditions) of a loan, for example when a home buyer fails to make a mortgage payment, or when a corporation or government fails to pay a bond which has reached maturity. A national or sovereign default is the failure or refusal of a government to repay its national debt. The dataset used in this project belongs to a Hackathon organized by "Univ.AI". All values were provided at the time of the loan application. Following are the features in the dataset: Income, Age, Experience, Married/Single, House_Ownership, Car_Ownership, Profession, CITY, STATE, CURRENT_JOB_YRS, CURRENT_HOUSE_YRS, and Risk_Flag. The Risk_Flag indicates whether there has been a default in the past or not. The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 2: AIRLINE PASSENGER SATISFACTION Analysis and Prediction Using Machine Learning and Deep Learning with Python The dataset used in this project contains an airline passenger satisfaction survey. In this case, you will determine what factors are highly correlated to a satisfied (or dissatisfied) passenger and predict passenger satisfaction. Below are the features in the dataset: Gender: Gender of the passengers (Female, Male); Customer Type: The customer type (Loyal customer, disloyal customer); Age: The actual age of the passengers; Type of Travel: Purpose of the flight of the passengers (Personal Travel, Business Travel); Class: Travel class in the plane of the passengers (Business, Eco, Eco Plus); Flight distance: The flight distance of this journey; Inflight wifi service: Satisfaction level of the inflight wifi service (0:Not Applicable;1-5); Departure/Arrival time convenient: Satisfaction level of Departure/Arrival time convenient; Ease of Online booking: Satisfaction level of online booking; Gate location: Satisfaction level of Gate location; Food and drink: Satisfaction level of Food and drink; Online boarding: Satisfaction level of online boarding; Seat comfort: Satisfaction level of Seat comfort; Inflight entertainment: Satisfaction level of inflight entertainment; On-board service: Satisfaction level of On-board service; Leg room service: Satisfaction level of Leg room service; Baggage handling: Satisfaction level of baggage handling; Check-in service: Satisfaction level of Check-in service; Inflight service: Satisfaction level of inflight service; Cleanliness: Satisfaction level of Cleanliness; Departure Delay in Minutes: Minutes delayed when departure; Arrival Delay in Minutes: Minutes delayed when Arrival; and Satisfaction: Airline satisfaction level (Satisfaction, neutral or dissatisfaction) The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 3: CREDIT CARD CHURNING CUSTOMER ANALYSIS AND PREDICTION USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON The dataset used in this project consists of more than 10,000 customers mentioning their age, salary, marital_status, credit card limit, credit card category, etc. There are 20 features in the dataset. In the dataset, there are only 16.07% of customers who have churned. Thus, it's a bit difficult to train our model to predict churning customers. Following are the features in the dataset: 'Attrition_Flag', 'Customer_Age', 'Gender', 'Dependent_count', 'Education_Level', 'Marital_Status', 'Income_Category', 'Card_Category', 'Months_on_book', 'Total_Relationship_Count', 'Months_Inactive_12_mon', 'Contacts_Count_12_mon', 'Credit_Limit', 'Total_Revolving_Bal', 'Avg_Open_To_Buy', 'Total_Amt_Chng_Q4_Q1', 'Total_Trans_Amt', 'Total_Trans_Ct', 'Total_Ct_Chng_Q4_Q1', and 'Avg_Utilization_Ratio',. The target variable is 'Attrition_Flag'. The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 4: MARKETING ANALYSIS AND PREDICTION USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON This data set was provided to students for their final project in order to test their statistical analysis skills as part of a MSc. in Business Analytics. It can be utilized for EDA, Statistical Analysis, and Visualizations. Following are the features in the dataset: ID = Customer's unique identifier; Year_Birth = Customer's birth year; Education = Customer's education level; Marital_Status = Customer's marital status; Income = Customer's yearly household income; Kidhome = Number of children in customer's household; Teenhome = Number of teenagers in customer's household; Dt_Customer = Date of customer's enrollment with the company; Recency = Number of days since customer's last purchase; MntWines = Amount spent on wine in the last 2 years; MntFruits = Amount spent on fruits in the last 2 years; MntMeatProducts = Amount spent on meat in the last 2 years; MntFishProducts = Amount spent on fish in the last 2 years; MntSweetProducts = Amount spent on sweets in the last 2 years; MntGoldProds = Amount spent on gold in the last 2 years; NumDealsPurchases = Number of purchases made with a discount; NumWebPurchases = Number of purchases made through the company's web site; NumCatalogPurchases = Number of purchases made using a catalogue; NumStorePurchases = Number of purchases made directly in stores; NumWebVisitsMonth = Number of visits to company's web site in the last month; AcceptedCmp3 = 1 if customer accepted the offer in the 3rd campaign, 0 otherwise; AcceptedCmp4 = 1 if customer accepted the offer in the 4th campaign, 0 otherwise; AcceptedCmp5 = 1 if customer accepted the offer in the 5th campaign, 0 otherwise; AcceptedCmp1 = 1 if customer accepted the offer in the 1st campaign, 0 otherwise; AcceptedCmp2 = 1 if customer accepted the offer in the 2nd campaign, 0 otherwise; Response = 1 if customer accepted the offer in the last campaign, 0 otherwise; Complain = 1 if customer complained in the last 2 years, 0 otherwise; and Country = Customer's location. The machine and deep learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 5: METEOROLOGICAL DATA ANALYSIS AND PREDICTION USING MACHINE LEARNING WITH PYTHON Meteorological phenomena are described and quantified by the variables of Earth's atmosphere: temperature, air pressure, water vapour, mass flow, and the variations and interactions of these variables, and how they change over time. Different spatial scales are used to describe and predict weather on local, regional, and global levels. The dataset used in this project consists of meteorological data with 96453 total number of data points and with 11 attributes/columns. Following are the columns in the dataset: Formatted Date; Summary; Precip Type; Temperature (C); Apparent Temperature (C); Humidity; Wind Speed (km/h); Wind Bearing (degrees); Visibility (km); Pressure (millibars); and Daily Summary. The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM classifier, Gradient Boosting, XGB classifier, and MLP classifier. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.
Publisher: BALIGE PUBLISHING
ISBN:
Category : Computers
Languages : en
Pages : 860
Book Description
PROJECT 1: DEFAULT LOAN PREDICTION BASED ON CUSTOMER BEHAVIOR Using Machine Learning and Deep Learning with Python In finance, default is failure to meet the legal obligations (or conditions) of a loan, for example when a home buyer fails to make a mortgage payment, or when a corporation or government fails to pay a bond which has reached maturity. A national or sovereign default is the failure or refusal of a government to repay its national debt. The dataset used in this project belongs to a Hackathon organized by "Univ.AI". All values were provided at the time of the loan application. Following are the features in the dataset: Income, Age, Experience, Married/Single, House_Ownership, Car_Ownership, Profession, CITY, STATE, CURRENT_JOB_YRS, CURRENT_HOUSE_YRS, and Risk_Flag. The Risk_Flag indicates whether there has been a default in the past or not. The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, Adaboost, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 2: AIRLINE PASSENGER SATISFACTION Analysis and Prediction Using Machine Learning and Deep Learning with Python The dataset used in this project contains an airline passenger satisfaction survey. In this case, you will determine what factors are highly correlated to a satisfied (or dissatisfied) passenger and predict passenger satisfaction. Below are the features in the dataset: Gender: Gender of the passengers (Female, Male); Customer Type: The customer type (Loyal customer, disloyal customer); Age: The actual age of the passengers; Type of Travel: Purpose of the flight of the passengers (Personal Travel, Business Travel); Class: Travel class in the plane of the passengers (Business, Eco, Eco Plus); Flight distance: The flight distance of this journey; Inflight wifi service: Satisfaction level of the inflight wifi service (0:Not Applicable;1-5); Departure/Arrival time convenient: Satisfaction level of Departure/Arrival time convenient; Ease of Online booking: Satisfaction level of online booking; Gate location: Satisfaction level of Gate location; Food and drink: Satisfaction level of Food and drink; Online boarding: Satisfaction level of online boarding; Seat comfort: Satisfaction level of Seat comfort; Inflight entertainment: Satisfaction level of inflight entertainment; On-board service: Satisfaction level of On-board service; Leg room service: Satisfaction level of Leg room service; Baggage handling: Satisfaction level of baggage handling; Check-in service: Satisfaction level of Check-in service; Inflight service: Satisfaction level of inflight service; Cleanliness: Satisfaction level of Cleanliness; Departure Delay in Minutes: Minutes delayed when departure; Arrival Delay in Minutes: Minutes delayed when Arrival; and Satisfaction: Airline satisfaction level (Satisfaction, neutral or dissatisfaction) The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 3: CREDIT CARD CHURNING CUSTOMER ANALYSIS AND PREDICTION USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON The dataset used in this project consists of more than 10,000 customers mentioning their age, salary, marital_status, credit card limit, credit card category, etc. There are 20 features in the dataset. In the dataset, there are only 16.07% of customers who have churned. Thus, it's a bit difficult to train our model to predict churning customers. Following are the features in the dataset: 'Attrition_Flag', 'Customer_Age', 'Gender', 'Dependent_count', 'Education_Level', 'Marital_Status', 'Income_Category', 'Card_Category', 'Months_on_book', 'Total_Relationship_Count', 'Months_Inactive_12_mon', 'Contacts_Count_12_mon', 'Credit_Limit', 'Total_Revolving_Bal', 'Avg_Open_To_Buy', 'Total_Amt_Chng_Q4_Q1', 'Total_Trans_Amt', 'Total_Trans_Ct', 'Total_Ct_Chng_Q4_Q1', and 'Avg_Utilization_Ratio',. The target variable is 'Attrition_Flag'. The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 4: MARKETING ANALYSIS AND PREDICTION USING MACHINE LEARNING AND DEEP LEARNING WITH PYTHON This data set was provided to students for their final project in order to test their statistical analysis skills as part of a MSc. in Business Analytics. It can be utilized for EDA, Statistical Analysis, and Visualizations. Following are the features in the dataset: ID = Customer's unique identifier; Year_Birth = Customer's birth year; Education = Customer's education level; Marital_Status = Customer's marital status; Income = Customer's yearly household income; Kidhome = Number of children in customer's household; Teenhome = Number of teenagers in customer's household; Dt_Customer = Date of customer's enrollment with the company; Recency = Number of days since customer's last purchase; MntWines = Amount spent on wine in the last 2 years; MntFruits = Amount spent on fruits in the last 2 years; MntMeatProducts = Amount spent on meat in the last 2 years; MntFishProducts = Amount spent on fish in the last 2 years; MntSweetProducts = Amount spent on sweets in the last 2 years; MntGoldProds = Amount spent on gold in the last 2 years; NumDealsPurchases = Number of purchases made with a discount; NumWebPurchases = Number of purchases made through the company's web site; NumCatalogPurchases = Number of purchases made using a catalogue; NumStorePurchases = Number of purchases made directly in stores; NumWebVisitsMonth = Number of visits to company's web site in the last month; AcceptedCmp3 = 1 if customer accepted the offer in the 3rd campaign, 0 otherwise; AcceptedCmp4 = 1 if customer accepted the offer in the 4th campaign, 0 otherwise; AcceptedCmp5 = 1 if customer accepted the offer in the 5th campaign, 0 otherwise; AcceptedCmp1 = 1 if customer accepted the offer in the 1st campaign, 0 otherwise; AcceptedCmp2 = 1 if customer accepted the offer in the 2nd campaign, 0 otherwise; Response = 1 if customer accepted the offer in the last campaign, 0 otherwise; Complain = 1 if customer complained in the last 2 years, 0 otherwise; and Country = Customer's location. The machine and deep learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM classifier, Gradient Boosting, XGB classifier, MLP classifier, and CNN 1D. Finally, you will plot boundary decision, ROC, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 5: METEOROLOGICAL DATA ANALYSIS AND PREDICTION USING MACHINE LEARNING WITH PYTHON Meteorological phenomena are described and quantified by the variables of Earth's atmosphere: temperature, air pressure, water vapour, mass flow, and the variations and interactions of these variables, and how they change over time. Different spatial scales are used to describe and predict weather on local, regional, and global levels. The dataset used in this project consists of meteorological data with 96453 total number of data points and with 11 attributes/columns. Following are the columns in the dataset: Formatted Date; Summary; Precip Type; Temperature (C); Apparent Temperature (C); Humidity; Wind Speed (km/h); Wind Bearing (degrees); Visibility (km); Pressure (millibars); and Daily Summary. The machine learning models used in this project are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM classifier, Gradient Boosting, XGB classifier, and MLP classifier. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.
Artificial Intelligence and Machine Learning in the Travel Industry
Author: Ben Vinod
Publisher: Springer Nature
ISBN: 3031254562
Category : Business & Economics
Languages : en
Pages : 182
Book Description
Over the past decade, Artificial Intelligence has proved invaluable in a range of industry verticals such as automotive and assembly, life sciences, retail, oil and gas, and travel. The leading sectors adopting AI rapidly are Financial Services, Automotive and Assembly, High Tech and Telecommunications. Travel has been slow in adoption, but the opportunity for generating incremental value by leveraging AI to augment traditional analytics driven solutions is extremely high. The contributions in this book, originally published as a special issue for the Journal of Revenue and Pricing Management, showcase the breadth and scope of the technological advances that have the potential to transform the travel experience, as well as the individuals who are already putting them into practice.
Publisher: Springer Nature
ISBN: 3031254562
Category : Business & Economics
Languages : en
Pages : 182
Book Description
Over the past decade, Artificial Intelligence has proved invaluable in a range of industry verticals such as automotive and assembly, life sciences, retail, oil and gas, and travel. The leading sectors adopting AI rapidly are Financial Services, Automotive and Assembly, High Tech and Telecommunications. Travel has been slow in adoption, but the opportunity for generating incremental value by leveraging AI to augment traditional analytics driven solutions is extremely high. The contributions in this book, originally published as a special issue for the Journal of Revenue and Pricing Management, showcase the breadth and scope of the technological advances that have the potential to transform the travel experience, as well as the individuals who are already putting them into practice.
Microsoft Azure Essentials Azure Machine Learning
Author: Jeff Barnes
Publisher: Microsoft Press
ISBN: 073569818X
Category : Computers
Languages : en
Pages : 393
Book Description
Microsoft Azure Essentials from Microsoft Press is a series of free ebooks designed to help you advance your technical skills with Microsoft Azure. This third ebook in the series introduces Microsoft Azure Machine Learning, a service that a developer can use to build predictive analytics models (using training datasets from a variety of data sources) and then easily deploy those models for consumption as cloud web services. The ebook presents an overview of modern data science theory and principles, the associated workflow, and then covers some of the more common machine learning algorithms in use today. It builds a variety of predictive analytics models using real world data, evaluates several different machine learning algorithms and modeling strategies, and then deploys the finished models as machine learning web services on Azure within a matter of minutes. The ebook also expands on a working Azure Machine Learning predictive model example to explore the types of client and server applications you can create to consume Azure Machine Learning web services. Watch Microsoft Press’s blog and Twitter (@MicrosoftPress) to learn about other free ebooks in the Microsoft Azure Essentials series.
Publisher: Microsoft Press
ISBN: 073569818X
Category : Computers
Languages : en
Pages : 393
Book Description
Microsoft Azure Essentials from Microsoft Press is a series of free ebooks designed to help you advance your technical skills with Microsoft Azure. This third ebook in the series introduces Microsoft Azure Machine Learning, a service that a developer can use to build predictive analytics models (using training datasets from a variety of data sources) and then easily deploy those models for consumption as cloud web services. The ebook presents an overview of modern data science theory and principles, the associated workflow, and then covers some of the more common machine learning algorithms in use today. It builds a variety of predictive analytics models using real world data, evaluates several different machine learning algorithms and modeling strategies, and then deploys the finished models as machine learning web services on Azure within a matter of minutes. The ebook also expands on a working Azure Machine Learning predictive model example to explore the types of client and server applications you can create to consume Azure Machine Learning web services. Watch Microsoft Press’s blog and Twitter (@MicrosoftPress) to learn about other free ebooks in the Microsoft Azure Essentials series.
2018 IEEE International Congress on Big Data (BigData Congress)
Author: IEEE Staff
Publisher:
ISBN: 9781538672334
Category :
Languages : en
Pages :
Book Description
ig Data Architecture, Big Data Modeling, Big Data As A Service, Big Data for Vertical Industries (Government, Healthcare, etc ), Big Data Analytics, Big Data Toolkits, Big Data Open Platforms, Economic Analysis, Big Data for Enterprise Transformation, Big Data in Business Performance Management, Big Data for Business Model Innovations and Analytics, Big Data in Enterprise Management Models and Practices, Big Data in Government Management Models and Practices, and Big Data in Smart Planet Solutions
Publisher:
ISBN: 9781538672334
Category :
Languages : en
Pages :
Book Description
ig Data Architecture, Big Data Modeling, Big Data As A Service, Big Data for Vertical Industries (Government, Healthcare, etc ), Big Data Analytics, Big Data Toolkits, Big Data Open Platforms, Economic Analysis, Big Data for Enterprise Transformation, Big Data in Business Performance Management, Big Data for Business Model Innovations and Analytics, Big Data in Enterprise Management Models and Practices, Big Data in Government Management Models and Practices, and Big Data in Smart Planet Solutions
Handbook of Big Data Technologies
Author: Albert Y. Zomaya
Publisher: Springer
ISBN: 331949340X
Category : Computers
Languages : en
Pages : 890
Book Description
This handbook offers comprehensive coverage of recent advancements in Big Data technologies and related paradigms. Chapters are authored by international leading experts in the field, and have been reviewed and revised for maximum reader value. The volume consists of twenty-five chapters organized into four main parts. Part one covers the fundamental concepts of Big Data technologies including data curation mechanisms, data models, storage models, programming models and programming platforms. It also dives into the details of implementing Big SQL query engines and big stream processing systems. Part Two focuses on the semantic aspects of Big Data management including data integration and exploratory ad hoc analysis in addition to structured querying and pattern matching techniques. Part Three presents a comprehensive overview of large scale graph processing. It covers the most recent research in large scale graph processing platforms, introducing several scalable graph querying and mining mechanisms in domains such as social networks. Part Four details novel applications that have been made possible by the rapid emergence of Big Data technologies such as Internet-of-Things (IOT), Cognitive Computing and SCADA Systems. All parts of the book discuss open research problems, including potential opportunities, that have arisen from the rapid progress of Big Data technologies and the associated increasing requirements of application domains. Designed for researchers, IT professionals and graduate students, this book is a timely contribution to the growing Big Data field. Big Data has been recognized as one of leading emerging technologies that will have a major contribution and impact on the various fields of science and varies aspect of the human society over the coming decades. Therefore, the content in this book will be an essential tool to help readers understand the development and future of the field.
Publisher: Springer
ISBN: 331949340X
Category : Computers
Languages : en
Pages : 890
Book Description
This handbook offers comprehensive coverage of recent advancements in Big Data technologies and related paradigms. Chapters are authored by international leading experts in the field, and have been reviewed and revised for maximum reader value. The volume consists of twenty-five chapters organized into four main parts. Part one covers the fundamental concepts of Big Data technologies including data curation mechanisms, data models, storage models, programming models and programming platforms. It also dives into the details of implementing Big SQL query engines and big stream processing systems. Part Two focuses on the semantic aspects of Big Data management including data integration and exploratory ad hoc analysis in addition to structured querying and pattern matching techniques. Part Three presents a comprehensive overview of large scale graph processing. It covers the most recent research in large scale graph processing platforms, introducing several scalable graph querying and mining mechanisms in domains such as social networks. Part Four details novel applications that have been made possible by the rapid emergence of Big Data technologies such as Internet-of-Things (IOT), Cognitive Computing and SCADA Systems. All parts of the book discuss open research problems, including potential opportunities, that have arisen from the rapid progress of Big Data technologies and the associated increasing requirements of application domains. Designed for researchers, IT professionals and graduate students, this book is a timely contribution to the growing Big Data field. Big Data has been recognized as one of leading emerging technologies that will have a major contribution and impact on the various fields of science and varies aspect of the human society over the coming decades. Therefore, the content in this book will be an essential tool to help readers understand the development and future of the field.
A Guide to Convolutional Neural Networks for Computer Vision
Author: Salman Khan
Publisher: Morgan & Claypool Publishers
ISBN: 1681732823
Category : Computers
Languages : en
Pages : 284
Book Description
Computer vision has become increasingly important and effective in recent years due to its wide-ranging applications in areas as diverse as smart surveillance and monitoring, health and medicine, sports and recreation, robotics, drones, and self-driving cars. Visual recognition tasks, such as image classification, localization, and detection, are the core building blocks of many of these applications, and recent developments in Convolutional Neural Networks (CNNs) have led to outstanding performance in these state-of-the-art visual recognition tasks and systems. As a result, CNNs now form the crux of deep learning algorithms in computer vision. This self-contained guide will benefit those who seek to both understand the theory behind CNNs and to gain hands-on experience on the application of CNNs in computer vision. It provides a comprehensive introduction to CNNs starting with the essential concepts behind neural networks: training, regularization, and optimization of CNNs. The book also discusses a wide range of loss functions, network layers, and popular CNN architectures, reviews the different techniques for the evaluation of CNNs, and presents some popular CNN tools and libraries that are commonly used in computer vision. Further, this text describes and discusses case studies that are related to the application of CNN in computer vision, including image classification, object detection, semantic segmentation, scene understanding, and image generation. This book is ideal for undergraduate and graduate students, as no prior background knowledge in the field is required to follow the material, as well as new researchers, developers, engineers, and practitioners who are interested in gaining a quick understanding of CNN models.
Publisher: Morgan & Claypool Publishers
ISBN: 1681732823
Category : Computers
Languages : en
Pages : 284
Book Description
Computer vision has become increasingly important and effective in recent years due to its wide-ranging applications in areas as diverse as smart surveillance and monitoring, health and medicine, sports and recreation, robotics, drones, and self-driving cars. Visual recognition tasks, such as image classification, localization, and detection, are the core building blocks of many of these applications, and recent developments in Convolutional Neural Networks (CNNs) have led to outstanding performance in these state-of-the-art visual recognition tasks and systems. As a result, CNNs now form the crux of deep learning algorithms in computer vision. This self-contained guide will benefit those who seek to both understand the theory behind CNNs and to gain hands-on experience on the application of CNNs in computer vision. It provides a comprehensive introduction to CNNs starting with the essential concepts behind neural networks: training, regularization, and optimization of CNNs. The book also discusses a wide range of loss functions, network layers, and popular CNN architectures, reviews the different techniques for the evaluation of CNNs, and presents some popular CNN tools and libraries that are commonly used in computer vision. Further, this text describes and discusses case studies that are related to the application of CNN in computer vision, including image classification, object detection, semantic segmentation, scene understanding, and image generation. This book is ideal for undergraduate and graduate students, as no prior background knowledge in the field is required to follow the material, as well as new researchers, developers, engineers, and practitioners who are interested in gaining a quick understanding of CNN models.
Fundamentals of Machine Learning for Predictive Data Analytics, second edition
Author: John D. Kelleher
Publisher: MIT Press
ISBN: 0262361108
Category : Computers
Languages : en
Pages : 853
Book Description
The second edition of a comprehensive introduction to machine learning approaches used in predictive data analytics, covering both theory and practice. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. This second edition covers recent developments in machine learning, especially in a new chapter on deep learning, and two new chapters that go beyond predictive analytics to cover unsupervised learning and reinforcement learning.
Publisher: MIT Press
ISBN: 0262361108
Category : Computers
Languages : en
Pages : 853
Book Description
The second edition of a comprehensive introduction to machine learning approaches used in predictive data analytics, covering both theory and practice. Machine learning is often used to build predictive models by extracting patterns from large datasets. These models are used in predictive data analytics applications including price prediction, risk assessment, predicting customer behavior, and document classification. This introductory textbook offers a detailed and focused treatment of the most important machine learning approaches used in predictive data analytics, covering both theoretical concepts and practical applications. Technical and mathematical material is augmented with explanatory worked examples, and case studies illustrate the application of these models in the broader business context. This second edition covers recent developments in machine learning, especially in a new chapter on deep learning, and two new chapters that go beyond predictive analytics to cover unsupervised learning and reinforcement learning.
Artificial Intelligence By Example
Author: Denis Rothman
Publisher: Packt Publishing Ltd
ISBN: 1839212810
Category : Computers
Languages : en
Pages : 579
Book Description
Understand the fundamentals and develop your own AI solutions in this updated edition packed with many new examples Key FeaturesAI-based examples to guide you in designing and implementing machine intelligenceBuild machine intelligence from scratch using artificial intelligence examplesDevelop machine intelligence from scratch using real artificial intelligenceBook Description AI has the potential to replicate humans in every field. Artificial Intelligence By Example, Second Edition serves as a starting point for you to understand how AI is built, with the help of intriguing and exciting examples. This book will make you an adaptive thinker and help you apply concepts to real-world scenarios. Using some of the most interesting AI examples, right from computer programs such as a simple chess engine to cognitive chatbots, you will learn how to tackle the machine you are competing with. You will study some of the most advanced machine learning models, understand how to apply AI to blockchain and Internet of Things (IoT), and develop emotional quotient in chatbots using neural networks such as recurrent neural networks (RNNs) and convolutional neural networks (CNNs). This edition also has new examples for hybrid neural networks, combining reinforcement learning (RL) and deep learning (DL), chained algorithms, combining unsupervised learning with decision trees, random forests, combining DL and genetic algorithms, conversational user interfaces (CUI) for chatbots, neuromorphic computing, and quantum computing. By the end of this book, you will understand the fundamentals of AI and have worked through a number of examples that will help you develop your AI solutions. What you will learnApply k-nearest neighbors (KNN) to language translations and explore the opportunities in Google TranslateUnderstand chained algorithms combining unsupervised learning with decision treesSolve the XOR problem with feedforward neural networks (FNN) and build its architecture to represent a data flow graphLearn about meta learning models with hybrid neural networksCreate a chatbot and optimize its emotional intelligence deficiencies with tools such as Small Talk and data loggingBuilding conversational user interfaces (CUI) for chatbotsWriting genetic algorithms that optimize deep learning neural networksBuild quantum computing circuitsWho this book is for Developers and those interested in AI, who want to understand the fundamentals of Artificial Intelligence and implement them practically. Prior experience with Python programming and statistical knowledge is essential to make the most out of this book.
Publisher: Packt Publishing Ltd
ISBN: 1839212810
Category : Computers
Languages : en
Pages : 579
Book Description
Understand the fundamentals and develop your own AI solutions in this updated edition packed with many new examples Key FeaturesAI-based examples to guide you in designing and implementing machine intelligenceBuild machine intelligence from scratch using artificial intelligence examplesDevelop machine intelligence from scratch using real artificial intelligenceBook Description AI has the potential to replicate humans in every field. Artificial Intelligence By Example, Second Edition serves as a starting point for you to understand how AI is built, with the help of intriguing and exciting examples. This book will make you an adaptive thinker and help you apply concepts to real-world scenarios. Using some of the most interesting AI examples, right from computer programs such as a simple chess engine to cognitive chatbots, you will learn how to tackle the machine you are competing with. You will study some of the most advanced machine learning models, understand how to apply AI to blockchain and Internet of Things (IoT), and develop emotional quotient in chatbots using neural networks such as recurrent neural networks (RNNs) and convolutional neural networks (CNNs). This edition also has new examples for hybrid neural networks, combining reinforcement learning (RL) and deep learning (DL), chained algorithms, combining unsupervised learning with decision trees, random forests, combining DL and genetic algorithms, conversational user interfaces (CUI) for chatbots, neuromorphic computing, and quantum computing. By the end of this book, you will understand the fundamentals of AI and have worked through a number of examples that will help you develop your AI solutions. What you will learnApply k-nearest neighbors (KNN) to language translations and explore the opportunities in Google TranslateUnderstand chained algorithms combining unsupervised learning with decision treesSolve the XOR problem with feedforward neural networks (FNN) and build its architecture to represent a data flow graphLearn about meta learning models with hybrid neural networksCreate a chatbot and optimize its emotional intelligence deficiencies with tools such as Small Talk and data loggingBuilding conversational user interfaces (CUI) for chatbotsWriting genetic algorithms that optimize deep learning neural networksBuild quantum computing circuitsWho this book is for Developers and those interested in AI, who want to understand the fundamentals of Artificial Intelligence and implement them practically. Prior experience with Python programming and statistical knowledge is essential to make the most out of this book.
The Origin of Consciousness in the Breakdown of the Bicameral Mind
Author: Julian Jaynes
Publisher: Houghton Mifflin Harcourt
ISBN: 0547527543
Category : Psychology
Languages : en
Pages : 580
Book Description
National Book Award Finalist: “This man’s ideas may be the most influential, not to say controversial, of the second half of the twentieth century.”—Columbus Dispatch At the heart of this classic, seminal book is Julian Jaynes's still-controversial thesis that human consciousness did not begin far back in animal evolution but instead is a learned process that came about only three thousand years ago and is still developing. The implications of this revolutionary scientific paradigm extend into virtually every aspect of our psychology, our history and culture, our religion—and indeed our future. “Don’t be put off by the academic title of Julian Jaynes’s The Origin of Consciousness in the Breakdown of the Bicameral Mind. Its prose is always lucid and often lyrical…he unfolds his case with the utmost intellectual rigor.”—The New York Times “When Julian Jaynes . . . speculates that until late in the twentieth millennium BC men had no consciousness but were automatically obeying the voices of the gods, we are astounded but compelled to follow this remarkable thesis.”—John Updike, The New Yorker “He is as startling as Freud was in The Interpretation of Dreams, and Jaynes is equally as adept at forcing a new view of known human behavior.”—American Journal of Psychiatry
Publisher: Houghton Mifflin Harcourt
ISBN: 0547527543
Category : Psychology
Languages : en
Pages : 580
Book Description
National Book Award Finalist: “This man’s ideas may be the most influential, not to say controversial, of the second half of the twentieth century.”—Columbus Dispatch At the heart of this classic, seminal book is Julian Jaynes's still-controversial thesis that human consciousness did not begin far back in animal evolution but instead is a learned process that came about only three thousand years ago and is still developing. The implications of this revolutionary scientific paradigm extend into virtually every aspect of our psychology, our history and culture, our religion—and indeed our future. “Don’t be put off by the academic title of Julian Jaynes’s The Origin of Consciousness in the Breakdown of the Bicameral Mind. Its prose is always lucid and often lyrical…he unfolds his case with the utmost intellectual rigor.”—The New York Times “When Julian Jaynes . . . speculates that until late in the twentieth millennium BC men had no consciousness but were automatically obeying the voices of the gods, we are astounded but compelled to follow this remarkable thesis.”—John Updike, The New Yorker “He is as startling as Freud was in The Interpretation of Dreams, and Jaynes is equally as adept at forcing a new view of known human behavior.”—American Journal of Psychiatry