Author: William R. Cotton
Publisher: Academic Press
ISBN: 0080916651
Category : Science
Languages : en
Pages : 826
Book Description
Storm and Cloud Dynamics focuses on the dynamics of clouds and of precipitating mesoscale meteorological systems. Clouds and precipitating mesoscale systems represent some of the most important and scientifically exciting weather systems in the world. These are the systems that produce torrential rains, severe winds including downburst and tornadoes, hail, thunder and lightning, and major snow storms. Forecasting such storms represents a major challenge since they are too small to be adequately resolved by conventional observing networks and numerical prediction models. - Provides a complete treatment of clouds integrating the analysis of air motions with cloud structure, microphysics, and precipitation mechanics - Describes and explains the basic types of clouds and cloud systems that occur in the atmosphere-fog, stratus, stratocumulus, altocumulus, altostratus, cirrus, thunderstorms, tornadoes, waterspouts, orographically induced clouds, mesoscale convection complexes, hurricanes, fronts, and extratropical cyclones - Summarizes the fundamentals, both observational and theoretical, of atmospheric dynamics, thermodynamics, cloud microphysics, and radar meteorology, allowing each type of cloud to be examined in depth - Integrates the latest field observations, numerical model simulations, and theory - Supplies a theoretical treatment suitable for the advanced undergraduate or graduate level, as well as post-graduate
Storm and Cloud Dynamics
Author: William R. Cotton
Publisher: Academic Press
ISBN: 0080916651
Category : Science
Languages : en
Pages : 826
Book Description
Storm and Cloud Dynamics focuses on the dynamics of clouds and of precipitating mesoscale meteorological systems. Clouds and precipitating mesoscale systems represent some of the most important and scientifically exciting weather systems in the world. These are the systems that produce torrential rains, severe winds including downburst and tornadoes, hail, thunder and lightning, and major snow storms. Forecasting such storms represents a major challenge since they are too small to be adequately resolved by conventional observing networks and numerical prediction models. - Provides a complete treatment of clouds integrating the analysis of air motions with cloud structure, microphysics, and precipitation mechanics - Describes and explains the basic types of clouds and cloud systems that occur in the atmosphere-fog, stratus, stratocumulus, altocumulus, altostratus, cirrus, thunderstorms, tornadoes, waterspouts, orographically induced clouds, mesoscale convection complexes, hurricanes, fronts, and extratropical cyclones - Summarizes the fundamentals, both observational and theoretical, of atmospheric dynamics, thermodynamics, cloud microphysics, and radar meteorology, allowing each type of cloud to be examined in depth - Integrates the latest field observations, numerical model simulations, and theory - Supplies a theoretical treatment suitable for the advanced undergraduate or graduate level, as well as post-graduate
Publisher: Academic Press
ISBN: 0080916651
Category : Science
Languages : en
Pages : 826
Book Description
Storm and Cloud Dynamics focuses on the dynamics of clouds and of precipitating mesoscale meteorological systems. Clouds and precipitating mesoscale systems represent some of the most important and scientifically exciting weather systems in the world. These are the systems that produce torrential rains, severe winds including downburst and tornadoes, hail, thunder and lightning, and major snow storms. Forecasting such storms represents a major challenge since they are too small to be adequately resolved by conventional observing networks and numerical prediction models. - Provides a complete treatment of clouds integrating the analysis of air motions with cloud structure, microphysics, and precipitation mechanics - Describes and explains the basic types of clouds and cloud systems that occur in the atmosphere-fog, stratus, stratocumulus, altocumulus, altostratus, cirrus, thunderstorms, tornadoes, waterspouts, orographically induced clouds, mesoscale convection complexes, hurricanes, fronts, and extratropical cyclones - Summarizes the fundamentals, both observational and theoretical, of atmospheric dynamics, thermodynamics, cloud microphysics, and radar meteorology, allowing each type of cloud to be examined in depth - Integrates the latest field observations, numerical model simulations, and theory - Supplies a theoretical treatment suitable for the advanced undergraduate or graduate level, as well as post-graduate
Boundary Layer Dynamics
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309057426
Category : Science
Languages : en
Pages : 49
Book Description
Publisher: National Academies Press
ISBN: 0309057426
Category : Science
Languages : en
Pages : 49
Book Description
Words to Rhyme with
Author: Willard R. Espy
Publisher: Checkmark Books
ISBN: 9780816043132
Category : English language
Languages : en
Pages : 692
Book Description
An easy-to-use dictionary of over 80,000 rhyming words.
Publisher: Checkmark Books
ISBN: 9780816043132
Category : English language
Languages : en
Pages : 692
Book Description
An easy-to-use dictionary of over 80,000 rhyming words.
Microwave Remote Sensing: Microwave remote sensing fundamentals and radiometry
Author: Fawwaz Tayssir Ulaby
Publisher:
ISBN: 9780890061909
Category : Technology & Engineering
Languages : en
Pages : 2162
Book Description
Publisher:
ISBN: 9780890061909
Category : Technology & Engineering
Languages : en
Pages : 2162
Book Description
The Physics and Parameterization of Moist Atmospheric Convection
Author: R.K. Smith
Publisher: Springer Science & Business Media
ISBN: 9401588287
Category : Science
Languages : en
Pages : 499
Book Description
An up-to-date summary of our understanding of the dynamics and thermodynamics of moist atmospheric convection, with a strong focus on recent developments in the field. The book also reviews ways in which moist convection may be parameterised in large-scale numerical models - a field in which there is still some controversy - and discusses the implications of convection for large-scale flow. Audience: The book is aimed at the graduate level and research meteorologists as well as scientists in other disciplines who need to know more about moist convection and its representation in numerical models.
Publisher: Springer Science & Business Media
ISBN: 9401588287
Category : Science
Languages : en
Pages : 499
Book Description
An up-to-date summary of our understanding of the dynamics and thermodynamics of moist atmospheric convection, with a strong focus on recent developments in the field. The book also reviews ways in which moist convection may be parameterised in large-scale numerical models - a field in which there is still some controversy - and discusses the implications of convection for large-scale flow. Audience: The book is aimed at the graduate level and research meteorologists as well as scientists in other disciplines who need to know more about moist convection and its representation in numerical models.
Airborne Measurements for Environmental Research
Author: Manfred Wendisch
Publisher: John Wiley & Sons
ISBN: 3527653236
Category : Science
Languages : en
Pages : 659
Book Description
This first comprehensive review of airborne measurement principles covers all atmospheric components and surface parameters. It describes the common techniques to characterize aerosol particles and cloud/precipitation elements, while also explaining radiation quantities and pertinent hyperspectral and active remote sensing measurement techniques along the way. As a result, the major principles of operation are introduced and exemplified using specific instruments, treating both classic and emerging measurement techniques. The two editors head an international community of eminent scientists, all of them accepted and experienced specialists in their field, who help readers to understand specific problems related to airborne research, such as immanent uncertainties and limitations. They also provide guidance on the suitability of instruments to measure certain parameters and to select the correct type of device. While primarily intended for climate, geophysical and atmospheric researchers, its relevance to solar system objects makes this work equally appealing to astronomers studying atmospheres of solar system bodies with telescopes and space probes.
Publisher: John Wiley & Sons
ISBN: 3527653236
Category : Science
Languages : en
Pages : 659
Book Description
This first comprehensive review of airborne measurement principles covers all atmospheric components and surface parameters. It describes the common techniques to characterize aerosol particles and cloud/precipitation elements, while also explaining radiation quantities and pertinent hyperspectral and active remote sensing measurement techniques along the way. As a result, the major principles of operation are introduced and exemplified using specific instruments, treating both classic and emerging measurement techniques. The two editors head an international community of eminent scientists, all of them accepted and experienced specialists in their field, who help readers to understand specific problems related to airborne research, such as immanent uncertainties and limitations. They also provide guidance on the suitability of instruments to measure certain parameters and to select the correct type of device. While primarily intended for climate, geophysical and atmospheric researchers, its relevance to solar system objects makes this work equally appealing to astronomers studying atmospheres of solar system bodies with telescopes and space probes.
Springer Handbook of Atmospheric Measurements
Author: Thomas Foken
Publisher: Springer Nature
ISBN: 3030521710
Category : Science
Languages : en
Pages : 1761
Book Description
This practical handbook provides a clearly structured, concise and comprehensive account of the huge variety of atmospheric and related measurements relevant to meteorologists and for the purpose of weather forecasting and climate research, but also to the practitioner in the wider field of environmental physics and ecology. The Springer Handbook of Atmospheric Measurements is divided into six parts: The first part offers instructive descriptions of the basics of atmospheric measurements and the multitude of their influencing factors, fundamentals of quality control and standardization, as well as equations and tables of atmospheric, water, and soil quantities. The subsequent parts present classical in-situ measurements as well as remote sensing techniques from both ground-based as well as airborn or satellite-based methods. The next part focusses on complex measurements and methods that integrate different techniques to establish more holistic data. Brief discussions of measurements in soils and water, at plants, in urban and rural environments and for renewable energies demonstrate the potential of such applications. The final part provides an overview of atmospheric and ecological networks. Written by distinguished experts from academia and industry, each of the 64 chapters provides in-depth discussions of the available devices with their specifications, aspects of quality control, maintenance as well as their potential for the future. A large number of thoroughly compiled tables of physical quantities, sensors and system characteristics make this handbook a unique, universal and useful reference for the practitioner and absolutely essential for researchers, students, and technicians.
Publisher: Springer Nature
ISBN: 3030521710
Category : Science
Languages : en
Pages : 1761
Book Description
This practical handbook provides a clearly structured, concise and comprehensive account of the huge variety of atmospheric and related measurements relevant to meteorologists and for the purpose of weather forecasting and climate research, but also to the practitioner in the wider field of environmental physics and ecology. The Springer Handbook of Atmospheric Measurements is divided into six parts: The first part offers instructive descriptions of the basics of atmospheric measurements and the multitude of their influencing factors, fundamentals of quality control and standardization, as well as equations and tables of atmospheric, water, and soil quantities. The subsequent parts present classical in-situ measurements as well as remote sensing techniques from both ground-based as well as airborn or satellite-based methods. The next part focusses on complex measurements and methods that integrate different techniques to establish more holistic data. Brief discussions of measurements in soils and water, at plants, in urban and rural environments and for renewable energies demonstrate the potential of such applications. The final part provides an overview of atmospheric and ecological networks. Written by distinguished experts from academia and industry, each of the 64 chapters provides in-depth discussions of the available devices with their specifications, aspects of quality control, maintenance as well as their potential for the future. A large number of thoroughly compiled tables of physical quantities, sensors and system characteristics make this handbook a unique, universal and useful reference for the practitioner and absolutely essential for researchers, students, and technicians.
Mixed-Phase Clouds
Author: Constantin Andronache
Publisher: Elsevier
ISBN: 012810550X
Category : Science
Languages : en
Pages : 302
Book Description
Mixed-Phase Clouds: Observations and Modeling presents advanced research topics on mixed-phase clouds. As the societal impacts of extreme weather and its forecasting grow, there is a continuous need to refine atmospheric observations, techniques and numerical models. Understanding the role of clouds in the atmosphere is increasingly vital for current applications, such as prediction and prevention of aircraft icing, weather modification, and the assessment of the effects of cloud phase partition in climate models. This book provides the essential information needed to address these problems with a focus on current observations, simulations and applications. - Provides in-depth knowledge and simulation of mixed-phase clouds over many regions of Earth, explaining their role in weather and climate - Features current research examples and case studies, including those on advanced research methods from authors with experience in both academia and the industry - Discusses the latest advances in this subject area, providing the reader with access to best practices for remote sensing and numerical modeling
Publisher: Elsevier
ISBN: 012810550X
Category : Science
Languages : en
Pages : 302
Book Description
Mixed-Phase Clouds: Observations and Modeling presents advanced research topics on mixed-phase clouds. As the societal impacts of extreme weather and its forecasting grow, there is a continuous need to refine atmospheric observations, techniques and numerical models. Understanding the role of clouds in the atmosphere is increasingly vital for current applications, such as prediction and prevention of aircraft icing, weather modification, and the assessment of the effects of cloud phase partition in climate models. This book provides the essential information needed to address these problems with a focus on current observations, simulations and applications. - Provides in-depth knowledge and simulation of mixed-phase clouds over many regions of Earth, explaining their role in weather and climate - Features current research examples and case studies, including those on advanced research methods from authors with experience in both academia and the industry - Discusses the latest advances in this subject area, providing the reader with access to best practices for remote sensing and numerical modeling
Aerosol-Cloud Interactions from Urban, Regional, to Global Scales
Author: Yuan Wang
Publisher: Springer
ISBN: 3662471752
Category : Science
Languages : en
Pages : 100
Book Description
The studies in this dissertation aim at advancing our scientific understandings about physical processes involved in the aerosol-cloud-precipitation interaction and quantitatively assessing the impacts of aerosols on the cloud systems with diverse scales over the globe on the basis of the observational data analysis and various modeling studies. As recognized in the Fifth Assessment Report by the Inter-government Panel on Climate Change, the magnitude of radiative forcing by atmospheric aerosols is highly uncertain, representing the largest uncertainty in projections of future climate by anthropogenic activities. By using a newly implemented cloud microphysical scheme in the cloud-resolving model, the thesis assesses aerosol-cloud interaction for distinct weather systems, ranging from individual cumulus to mesoscale convective systems. This thesis also introduces a novel hierarchical modeling approach that solves a long outstanding mismatch between simulations by regional weather models and global climate models in the climate modeling community. More importantly, the thesis provides key scientific solutions to several challenging questions in climate science, including the global impacts of the Asian pollution. As scientists wrestle with the complexities of climate change in response to varied anthropogenic forcing, perhaps no problem is more challenging than the understanding of the impacts of atmospheric aerosols from air pollution on clouds and the global circulation.
Publisher: Springer
ISBN: 3662471752
Category : Science
Languages : en
Pages : 100
Book Description
The studies in this dissertation aim at advancing our scientific understandings about physical processes involved in the aerosol-cloud-precipitation interaction and quantitatively assessing the impacts of aerosols on the cloud systems with diverse scales over the globe on the basis of the observational data analysis and various modeling studies. As recognized in the Fifth Assessment Report by the Inter-government Panel on Climate Change, the magnitude of radiative forcing by atmospheric aerosols is highly uncertain, representing the largest uncertainty in projections of future climate by anthropogenic activities. By using a newly implemented cloud microphysical scheme in the cloud-resolving model, the thesis assesses aerosol-cloud interaction for distinct weather systems, ranging from individual cumulus to mesoscale convective systems. This thesis also introduces a novel hierarchical modeling approach that solves a long outstanding mismatch between simulations by regional weather models and global climate models in the climate modeling community. More importantly, the thesis provides key scientific solutions to several challenging questions in climate science, including the global impacts of the Asian pollution. As scientists wrestle with the complexities of climate change in response to varied anthropogenic forcing, perhaps no problem is more challenging than the understanding of the impacts of atmospheric aerosols from air pollution on clouds and the global circulation.
Polarimetric Doppler Weather Radar
Author: V. N. Bringi
Publisher: Cambridge University Press
ISBN: 9780521623841
Category : Science
Languages : en
Pages : 666
Book Description
This 2001 book provides a detailed introduction to the principles of Doppler and polarimetric radar, focusing in particular on their use in the analysis of weather systems. The design features and operation of practical radar systems are highlighted throughout the book in order to illustrate important theoretical foundations. The authors begin by discussing background topics such as electromagnetic scattering, polarization, and wave propagation. They then deal in detail with the engineering aspects of pulsed Doppler polarimetric radar, including the relevant signal theory, spectral estimation techniques, and noise considerations. They close by examining a range of key applications in meteorology and remote sensing. The book will be of great use to graduate students of electrical engineering and atmospheric science as well as to practitioners involved in the applications of polarimetric radar systems.
Publisher: Cambridge University Press
ISBN: 9780521623841
Category : Science
Languages : en
Pages : 666
Book Description
This 2001 book provides a detailed introduction to the principles of Doppler and polarimetric radar, focusing in particular on their use in the analysis of weather systems. The design features and operation of practical radar systems are highlighted throughout the book in order to illustrate important theoretical foundations. The authors begin by discussing background topics such as electromagnetic scattering, polarization, and wave propagation. They then deal in detail with the engineering aspects of pulsed Doppler polarimetric radar, including the relevant signal theory, spectral estimation techniques, and noise considerations. They close by examining a range of key applications in meteorology and remote sensing. The book will be of great use to graduate students of electrical engineering and atmospheric science as well as to practitioners involved in the applications of polarimetric radar systems.