Author: E. Obert
Publisher: IOS Press
ISBN: 1607504073
Category : Science
Languages : en
Pages : 656
Book Description
The origin of Aerodynamic Design of Transport Aircraft stems from the time when the author was appointed part-time professor in the Aerospace Faculty of Delft University of Technology. At the time his main activities were those of leading the departments of Aerodynamics, Performance and Preliminary Design at Fokker Aircraft Company. The groundwork for this book started in 1987 as a series of lecture notes consisting mainly of pictorial material with a minimum of English explanatory text. After the demise of Fokker in 1996 one feared that interest in aeronautical engineering would strongly diminish. As a result of this, the course was discontinued and the relationship between the author and the faculty came to an end. Two years later the situation was reappraised, and the interest in aeronautical engineering remained, so the course was reinstated with a former Fokker colleague Ronald Slingerland as lecturer. The lecture notes from these courses form the foundation of this publication.
Aerodynamic Design of Transport Aircraft
Author: E. Obert
Publisher: IOS Press
ISBN: 1607504073
Category : Science
Languages : en
Pages : 656
Book Description
The origin of Aerodynamic Design of Transport Aircraft stems from the time when the author was appointed part-time professor in the Aerospace Faculty of Delft University of Technology. At the time his main activities were those of leading the departments of Aerodynamics, Performance and Preliminary Design at Fokker Aircraft Company. The groundwork for this book started in 1987 as a series of lecture notes consisting mainly of pictorial material with a minimum of English explanatory text. After the demise of Fokker in 1996 one feared that interest in aeronautical engineering would strongly diminish. As a result of this, the course was discontinued and the relationship between the author and the faculty came to an end. Two years later the situation was reappraised, and the interest in aeronautical engineering remained, so the course was reinstated with a former Fokker colleague Ronald Slingerland as lecturer. The lecture notes from these courses form the foundation of this publication.
Publisher: IOS Press
ISBN: 1607504073
Category : Science
Languages : en
Pages : 656
Book Description
The origin of Aerodynamic Design of Transport Aircraft stems from the time when the author was appointed part-time professor in the Aerospace Faculty of Delft University of Technology. At the time his main activities were those of leading the departments of Aerodynamics, Performance and Preliminary Design at Fokker Aircraft Company. The groundwork for this book started in 1987 as a series of lecture notes consisting mainly of pictorial material with a minimum of English explanatory text. After the demise of Fokker in 1996 one feared that interest in aeronautical engineering would strongly diminish. As a result of this, the course was discontinued and the relationship between the author and the faculty came to an end. Two years later the situation was reappraised, and the interest in aeronautical engineering remained, so the course was reinstated with a former Fokker colleague Ronald Slingerland as lecturer. The lecture notes from these courses form the foundation of this publication.
The Aerodynamic Design of Aircraft
Author: Dietrich Küchemann
Publisher: AIAA Education
ISBN: 9781600869228
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Dietrich Kuchemann's The Aerodynamic Design of Aircraft is as relevant and as forward looking today as it was when it was first published in 1978. It comprises the philosophy and life's work of a unique and visionary intellect. Based upon material taught in a course at Imperial College London, the insight and intuition conveyed by this text are timeless. With its republication, Kuchemann's influence will extend to the next generation of aerospace industry students and practitioners and the vehicles they will produce. Kuchemann establishes three classes of aircraft based on the character of flow involved. Each class is suitable for a distinct cruise speed regime: classical and swept aircraft for subsonic and transonic cruise, slender-wing aircraft for supersonic cruise, and wave-rider aircraft for hypersonic cruise. Unlike most engineering texts, which focus on a set of tools, Kuchemann's approach is to focus on the problem and its solution - what kind of flow is best for a given class of aircraft and how to achieve it.With this approach, Kuchemann fully embraces the true inverse nature of design; rather than answer what flow given the shape, he strives to answer what flow given the purpose and then what shape given the flow.
Publisher: AIAA Education
ISBN: 9781600869228
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Dietrich Kuchemann's The Aerodynamic Design of Aircraft is as relevant and as forward looking today as it was when it was first published in 1978. It comprises the philosophy and life's work of a unique and visionary intellect. Based upon material taught in a course at Imperial College London, the insight and intuition conveyed by this text are timeless. With its republication, Kuchemann's influence will extend to the next generation of aerospace industry students and practitioners and the vehicles they will produce. Kuchemann establishes three classes of aircraft based on the character of flow involved. Each class is suitable for a distinct cruise speed regime: classical and swept aircraft for subsonic and transonic cruise, slender-wing aircraft for supersonic cruise, and wave-rider aircraft for hypersonic cruise. Unlike most engineering texts, which focus on a set of tools, Kuchemann's approach is to focus on the problem and its solution - what kind of flow is best for a given class of aircraft and how to achieve it.With this approach, Kuchemann fully embraces the true inverse nature of design; rather than answer what flow given the shape, he strives to answer what flow given the purpose and then what shape given the flow.
Jet Propulsion
Author: N. A. Cumpsty
Publisher: Cambridge University Press
ISBN: 9780521541442
Category : Technology & Engineering
Languages : en
Pages : 326
Book Description
This is the second edition of Cumpsty's excellent self-contained introduction to the aerodynamic and thermodynamic design of modern civil and military jet engines. Through two engine design projects, first for a new large passenger aircraft, and second for a new fighter aircraft, the text introduces, illustrates and explains the important facets of modern engine design. Individual sections cover aircraft requirements and aerodynamics, principles of gas turbines and jet engines, elementary compressible fluid mechanics, bypass ratio selection, scaling and dimensional analysis, turbine and compressor design and characteristics, design optimization, and off-design performance. The book emphasises principles and ideas, with simplification and approximation used where this helps understanding. This edition has been thoroughly updated and revised, and includes a new appendix on noise control and an expanded treatment of combustion emissions. Suitable for student courses in aircraft propulsion, but also an invaluable reference for engineers in the engine and airframe industry.
Publisher: Cambridge University Press
ISBN: 9780521541442
Category : Technology & Engineering
Languages : en
Pages : 326
Book Description
This is the second edition of Cumpsty's excellent self-contained introduction to the aerodynamic and thermodynamic design of modern civil and military jet engines. Through two engine design projects, first for a new large passenger aircraft, and second for a new fighter aircraft, the text introduces, illustrates and explains the important facets of modern engine design. Individual sections cover aircraft requirements and aerodynamics, principles of gas turbines and jet engines, elementary compressible fluid mechanics, bypass ratio selection, scaling and dimensional analysis, turbine and compressor design and characteristics, design optimization, and off-design performance. The book emphasises principles and ideas, with simplification and approximation used where this helps understanding. This edition has been thoroughly updated and revised, and includes a new appendix on noise control and an expanded treatment of combustion emissions. Suitable for student courses in aircraft propulsion, but also an invaluable reference for engineers in the engine and airframe industry.
Airplane Aerodynamics and Performance
Author: Jan Roskam
Publisher: DARcorporation
ISBN: 9781884885440
Category : Science
Languages : en
Pages : 748
Book Description
Publisher: DARcorporation
ISBN: 9781884885440
Category : Science
Languages : en
Pages : 748
Book Description
Aerodynamic Design of Transport Aircraft
Author: Ed Obert
Publisher: IOS Press
ISBN: 1586039709
Category : Science
Languages : en
Pages : 656
Book Description
After the demise of Fokker in 1996 one feared that interest in aeronautical engineering would strongly diminish. Two years later the situation was re-appraised, and the interest in aeronautical engineering remained, so the course was reinstated. This title includes the author's lecture notes from these courses.
Publisher: IOS Press
ISBN: 1586039709
Category : Science
Languages : en
Pages : 656
Book Description
After the demise of Fokker in 1996 one feared that interest in aeronautical engineering would strongly diminish. Two years later the situation was re-appraised, and the interest in aeronautical engineering remained, so the course was reinstated. This title includes the author's lecture notes from these courses.
Performance of the Jet Transport Airplane
Author: Trevor M. Young
Publisher: John Wiley & Sons
ISBN: 1119682789
Category : Technology & Engineering
Languages : en
Pages : 688
Book Description
Performance of the Jet Transport Airplane: Analysis Methods, Flight Operations, and Regulations presents a detailed and comprehensive treatment of performance analysis techniques for jet transport airplanes. Uniquely, the book describes key operational and regulatory procedures and constraints that directly impact the performance of commercial airliners. Topics include: rigid body dynamics; aerodynamic fundamentals; atmospheric models (including standard and non-standard atmospheres); height scales and altimetry; distance and speed measurement; lift and drag and associated mathematical models; jet engine performance (including thrust and specific fuel consumption models); takeoff and landing performance (with airfield and operational constraints); takeoff climb and obstacle clearance; level, climbing and descending flight (including accelerated climb/descent); cruise and range (including solutions by numerical integration); payload–range; endurance and holding; maneuvering flight (including turning and pitching maneuvers); total energy concepts; trip fuel planning and estimation (including regulatory fuel reserves); en route operations and limitations (e.g. climb-speed schedules, cruise ceiling, ETOPS); cost considerations (e.g. cost index, energy cost, fuel tankering); weight, balance and trim; flight envelopes and limitations (including stall and buffet onset speeds, V–n diagrams); environmental considerations (viz. noise and emissions); aircraft systems and airplane performance (e.g. cabin pressurization, de-/anti icing, and fuel); and performance-related regulatory requirements of the FAA (Federal Aviation Administration) and EASA (European Aviation Safety Agency). Key features: Describes methods for the analysis of the performance of jet transport airplanes during all phases of flight Presents both analytical (closed form) methods and numerical approaches Describes key FAA and EASA regulations that impact airplane performance Presents equations and examples in both SI (Système International) and USC (United States Customary) units Considers the influence of operational procedures and their impact on airplane performance Performance of the Jet Transport Airplane: Analysis Methods, Flight Operations, and Regulations provides a comprehensive treatment of the performance of modern jet transport airplanes in an operational context. It is a must-have reference for aerospace engineering students, applied researchers conducting performance-related studies, and flight operations engineers.
Publisher: John Wiley & Sons
ISBN: 1119682789
Category : Technology & Engineering
Languages : en
Pages : 688
Book Description
Performance of the Jet Transport Airplane: Analysis Methods, Flight Operations, and Regulations presents a detailed and comprehensive treatment of performance analysis techniques for jet transport airplanes. Uniquely, the book describes key operational and regulatory procedures and constraints that directly impact the performance of commercial airliners. Topics include: rigid body dynamics; aerodynamic fundamentals; atmospheric models (including standard and non-standard atmospheres); height scales and altimetry; distance and speed measurement; lift and drag and associated mathematical models; jet engine performance (including thrust and specific fuel consumption models); takeoff and landing performance (with airfield and operational constraints); takeoff climb and obstacle clearance; level, climbing and descending flight (including accelerated climb/descent); cruise and range (including solutions by numerical integration); payload–range; endurance and holding; maneuvering flight (including turning and pitching maneuvers); total energy concepts; trip fuel planning and estimation (including regulatory fuel reserves); en route operations and limitations (e.g. climb-speed schedules, cruise ceiling, ETOPS); cost considerations (e.g. cost index, energy cost, fuel tankering); weight, balance and trim; flight envelopes and limitations (including stall and buffet onset speeds, V–n diagrams); environmental considerations (viz. noise and emissions); aircraft systems and airplane performance (e.g. cabin pressurization, de-/anti icing, and fuel); and performance-related regulatory requirements of the FAA (Federal Aviation Administration) and EASA (European Aviation Safety Agency). Key features: Describes methods for the analysis of the performance of jet transport airplanes during all phases of flight Presents both analytical (closed form) methods and numerical approaches Describes key FAA and EASA regulations that impact airplane performance Presents equations and examples in both SI (Système International) and USC (United States Customary) units Considers the influence of operational procedures and their impact on airplane performance Performance of the Jet Transport Airplane: Analysis Methods, Flight Operations, and Regulations provides a comprehensive treatment of the performance of modern jet transport airplanes in an operational context. It is a must-have reference for aerospace engineering students, applied researchers conducting performance-related studies, and flight operations engineers.
Introduction to Aeronautics
Author: Steven A. Brandt
Publisher: AIAA
ISBN: 9781600860720
Category : Aeronautics
Languages : en
Pages : 544
Book Description
Publisher: AIAA
ISBN: 9781600860720
Category : Aeronautics
Languages : en
Pages : 544
Book Description
Flight Dynamics
Author: Robert F. Stengel
Publisher: Princeton University Press
ISBN: 0691237042
Category : Science
Languages : en
Pages : 914
Book Description
An updated and expanded new edition of an authoritative book on flight dynamics and control system design for all types of current and future fixed-wing aircraft Since it was first published, Flight Dynamics has offered a new approach to the science and mathematics of aircraft flight, unifying principles of aeronautics with contemporary systems analysis. Now updated and expanded, this authoritative book by award-winning aeronautics engineer Robert Stengel presents traditional material in the context of modern computational tools and multivariable methods. Special attention is devoted to models and techniques for analysis, simulation, evaluation of flying qualities, and robust control system design. Using common notation and not assuming a strong background in aeronautics, Flight Dynamics will engage a wide variety of readers, including aircraft designers, flight test engineers, researchers, instructors, and students. It introduces principles, derivations, and equations of flight dynamics as well as methods of flight control design with frequent reference to MATLAB functions and examples. Topics include aerodynamics, propulsion, structures, flying qualities, flight control, and the atmospheric and gravitational environment. The second edition of Flight Dynamics features up-to-date examples; a new chapter on control law design for digital fly-by-wire systems; new material on propulsion, aerodynamics of control surfaces, and aeroelastic control; many more illustrations; and text boxes that introduce general mathematical concepts. Features a fluid, progressive presentation that aids informal and self-directed study Provides a clear, consistent notation that supports understanding, from elementary to complicated concepts Offers a comprehensive blend of aerodynamics, dynamics, and control Presents a unified introduction of control system design, from basics to complex methods Includes links to online MATLAB software written by the author that supports the material covered in the book
Publisher: Princeton University Press
ISBN: 0691237042
Category : Science
Languages : en
Pages : 914
Book Description
An updated and expanded new edition of an authoritative book on flight dynamics and control system design for all types of current and future fixed-wing aircraft Since it was first published, Flight Dynamics has offered a new approach to the science and mathematics of aircraft flight, unifying principles of aeronautics with contemporary systems analysis. Now updated and expanded, this authoritative book by award-winning aeronautics engineer Robert Stengel presents traditional material in the context of modern computational tools and multivariable methods. Special attention is devoted to models and techniques for analysis, simulation, evaluation of flying qualities, and robust control system design. Using common notation and not assuming a strong background in aeronautics, Flight Dynamics will engage a wide variety of readers, including aircraft designers, flight test engineers, researchers, instructors, and students. It introduces principles, derivations, and equations of flight dynamics as well as methods of flight control design with frequent reference to MATLAB functions and examples. Topics include aerodynamics, propulsion, structures, flying qualities, flight control, and the atmospheric and gravitational environment. The second edition of Flight Dynamics features up-to-date examples; a new chapter on control law design for digital fly-by-wire systems; new material on propulsion, aerodynamics of control surfaces, and aeroelastic control; many more illustrations; and text boxes that introduce general mathematical concepts. Features a fluid, progressive presentation that aids informal and self-directed study Provides a clear, consistent notation that supports understanding, from elementary to complicated concepts Offers a comprehensive blend of aerodynamics, dynamics, and control Presents a unified introduction of control system design, from basics to complex methods Includes links to online MATLAB software written by the author that supports the material covered in the book
Introduction to Transonic Aerodynamics
Author: Roelof Vos
Publisher: Springer
ISBN: 9401797471
Category : Technology & Engineering
Languages : en
Pages : 561
Book Description
Written to teach students the nature of transonic flow and its mathematical foundation, this book offers a much-needed introduction to transonic aerodynamics. The authors present a quantitative and qualitative assessment of subsonic, supersonic and transonic flow around bodies in two and three dimensions. The book reviews the governing equations and explores their applications and limitations as employed in modeling and computational fluid dynamics. Some concepts, such as shock and expansion theory, are examined from a numerical perspective. Others, including shock-boundary-layer interaction, are discussed from a qualitative point of view. The book includes 60 examples and more than 200 practice problems. The authors also offer analytical methods such as Method of Characteristics (MOC) that allow readers to practice with the subject matter. The result is a wealth of insight into transonic flow phenomena and their impact on aircraft design, including compressibility effects, shock and expansion waves, shock-boundary-layer interaction and aeroelasticity.
Publisher: Springer
ISBN: 9401797471
Category : Technology & Engineering
Languages : en
Pages : 561
Book Description
Written to teach students the nature of transonic flow and its mathematical foundation, this book offers a much-needed introduction to transonic aerodynamics. The authors present a quantitative and qualitative assessment of subsonic, supersonic and transonic flow around bodies in two and three dimensions. The book reviews the governing equations and explores their applications and limitations as employed in modeling and computational fluid dynamics. Some concepts, such as shock and expansion theory, are examined from a numerical perspective. Others, including shock-boundary-layer interaction, are discussed from a qualitative point of view. The book includes 60 examples and more than 200 practice problems. The authors also offer analytical methods such as Method of Characteristics (MOC) that allow readers to practice with the subject matter. The result is a wealth of insight into transonic flow phenomena and their impact on aircraft design, including compressibility effects, shock and expansion waves, shock-boundary-layer interaction and aeroelasticity.
Synthesis of Subsonic Airplane Design
Author: E. Torenbeek
Publisher: Springer Science & Business Media
ISBN: 9401732027
Category : Technology & Engineering
Languages : en
Pages : 607
Book Description
Since the education of aeronautical engineers at Delft University of Technology started in 1940 under tae inspiring leadership of Professor H.J. van der Maas, much emphasis has been placed on the design of aircraft as part of the student's curriculum. Not only is aircraft design an optional subject for thesis work, but every aeronautical student has to carry out a preliminary airplane design in the course of his study. The main purpose of this preliminary design work is to enable the student to synthesize the knowledge ob tained separately in courses on aerodynamics, aircraft performances, stability and con trol, aircraft structures, etc. The student's exercises in preliminary design have been directed through the years by a number of staff members of the Department of Aerospace Engineering in Delft. The author of this book, Mr. E. Torenbeek, has made a large contribution to this part of the study programme for many years. Not only has he acquired vast experience in teaching airplane design at university level, but he has also been deeply involved in design-oriented re search, e.g. developing rational design methods and systematizing design information. I am very pleased that this wealth of experience, methods and data is now presented in this book.
Publisher: Springer Science & Business Media
ISBN: 9401732027
Category : Technology & Engineering
Languages : en
Pages : 607
Book Description
Since the education of aeronautical engineers at Delft University of Technology started in 1940 under tae inspiring leadership of Professor H.J. van der Maas, much emphasis has been placed on the design of aircraft as part of the student's curriculum. Not only is aircraft design an optional subject for thesis work, but every aeronautical student has to carry out a preliminary airplane design in the course of his study. The main purpose of this preliminary design work is to enable the student to synthesize the knowledge ob tained separately in courses on aerodynamics, aircraft performances, stability and con trol, aircraft structures, etc. The student's exercises in preliminary design have been directed through the years by a number of staff members of the Department of Aerospace Engineering in Delft. The author of this book, Mr. E. Torenbeek, has made a large contribution to this part of the study programme for many years. Not only has he acquired vast experience in teaching airplane design at university level, but he has also been deeply involved in design-oriented re search, e.g. developing rational design methods and systematizing design information. I am very pleased that this wealth of experience, methods and data is now presented in this book.