Adversarial AI Attacks, Mitigations, and Defense Strategies

Adversarial AI Attacks, Mitigations, and Defense Strategies PDF Author: John Sotiropoulos
Publisher: Packt Publishing Ltd
ISBN: 1835088678
Category : Computers
Languages : en
Pages : 586

Get Book Here

Book Description
Understand how adversarial attacks work against predictive and generative AI, and learn how to safeguard AI and LLM projects with practical examples leveraging OWASP, MITRE, and NIST Key Features Understand the connection between AI and security by learning about adversarial AI attacks Discover the latest security challenges in adversarial AI by examining GenAI, deepfakes, and LLMs Implement secure-by-design methods and threat modeling, using standards and MLSecOps to safeguard AI systems Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionAdversarial attacks trick AI systems with malicious data, creating new security risks by exploiting how AI learns. This challenges cybersecurity as it forces us to defend against a whole new kind of threat. This book demystifies adversarial attacks and equips cybersecurity professionals with the skills to secure AI technologies, moving beyond research hype or business-as-usual strategies. The strategy-based book is a comprehensive guide to AI security, presenting a structured approach with practical examples to identify and counter adversarial attacks. This book goes beyond a random selection of threats and consolidates recent research and industry standards, incorporating taxonomies from MITRE, NIST, and OWASP. Next, a dedicated section introduces a secure-by-design AI strategy with threat modeling to demonstrate risk-based defenses and strategies, focusing on integrating MLSecOps and LLMOps into security systems. To gain deeper insights, you’ll cover examples of incorporating CI, MLOps, and security controls, including open-access LLMs and ML SBOMs. Based on the classic NIST pillars, the book provides a blueprint for maturing enterprise AI security, discussing the role of AI security in safety and ethics as part of Trustworthy AI. By the end of this book, you’ll be able to develop, deploy, and secure AI systems effectively.What you will learn Understand poisoning, evasion, and privacy attacks and how to mitigate them Discover how GANs can be used for attacks and deepfakes Explore how LLMs change security, prompt injections, and data exposure Master techniques to poison LLMs with RAG, embeddings, and fine-tuning Explore supply-chain threats and the challenges of open-access LLMs Implement MLSecOps with CIs, MLOps, and SBOMs Who this book is for This book tackles AI security from both angles - offense and defense. AI builders (developers and engineers) will learn how to create secure systems, while cybersecurity professionals, such as security architects, analysts, engineers, ethical hackers, penetration testers, and incident responders will discover methods to combat threats and mitigate risks posed by attackers. The book also provides a secure-by-design approach for leaders to build AI with security in mind. To get the most out of this book, you’ll need a basic understanding of security, ML concepts, and Python.

Adversarial AI Attacks, Mitigations, and Defense Strategies

Adversarial AI Attacks, Mitigations, and Defense Strategies PDF Author: John Sotiropoulos
Publisher: Packt Publishing Ltd
ISBN: 1835088678
Category : Computers
Languages : en
Pages : 586

Get Book Here

Book Description
Understand how adversarial attacks work against predictive and generative AI, and learn how to safeguard AI and LLM projects with practical examples leveraging OWASP, MITRE, and NIST Key Features Understand the connection between AI and security by learning about adversarial AI attacks Discover the latest security challenges in adversarial AI by examining GenAI, deepfakes, and LLMs Implement secure-by-design methods and threat modeling, using standards and MLSecOps to safeguard AI systems Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionAdversarial attacks trick AI systems with malicious data, creating new security risks by exploiting how AI learns. This challenges cybersecurity as it forces us to defend against a whole new kind of threat. This book demystifies adversarial attacks and equips cybersecurity professionals with the skills to secure AI technologies, moving beyond research hype or business-as-usual strategies. The strategy-based book is a comprehensive guide to AI security, presenting a structured approach with practical examples to identify and counter adversarial attacks. This book goes beyond a random selection of threats and consolidates recent research and industry standards, incorporating taxonomies from MITRE, NIST, and OWASP. Next, a dedicated section introduces a secure-by-design AI strategy with threat modeling to demonstrate risk-based defenses and strategies, focusing on integrating MLSecOps and LLMOps into security systems. To gain deeper insights, you’ll cover examples of incorporating CI, MLOps, and security controls, including open-access LLMs and ML SBOMs. Based on the classic NIST pillars, the book provides a blueprint for maturing enterprise AI security, discussing the role of AI security in safety and ethics as part of Trustworthy AI. By the end of this book, you’ll be able to develop, deploy, and secure AI systems effectively.What you will learn Understand poisoning, evasion, and privacy attacks and how to mitigate them Discover how GANs can be used for attacks and deepfakes Explore how LLMs change security, prompt injections, and data exposure Master techniques to poison LLMs with RAG, embeddings, and fine-tuning Explore supply-chain threats and the challenges of open-access LLMs Implement MLSecOps with CIs, MLOps, and SBOMs Who this book is for This book tackles AI security from both angles - offense and defense. AI builders (developers and engineers) will learn how to create secure systems, while cybersecurity professionals, such as security architects, analysts, engineers, ethical hackers, penetration testers, and incident responders will discover methods to combat threats and mitigate risks posed by attackers. The book also provides a secure-by-design approach for leaders to build AI with security in mind. To get the most out of this book, you’ll need a basic understanding of security, ML concepts, and Python.

Game Theory and Machine Learning for Cyber Security

Game Theory and Machine Learning for Cyber Security PDF Author: Charles A. Kamhoua
Publisher: John Wiley & Sons
ISBN: 1119723949
Category : Technology & Engineering
Languages : en
Pages : 546

Get Book Here

Book Description
GAME THEORY AND MACHINE LEARNING FOR CYBER SECURITY Move beyond the foundations of machine learning and game theory in cyber security to the latest research in this cutting-edge field In Game Theory and Machine Learning for Cyber Security, a team of expert security researchers delivers a collection of central research contributions from both machine learning and game theory applicable to cybersecurity. The distinguished editors have included resources that address open research questions in game theory and machine learning applied to cyber security systems and examine the strengths and limitations of current game theoretic models for cyber security. Readers will explore the vulnerabilities of traditional machine learning algorithms and how they can be mitigated in an adversarial machine learning approach. The book offers a comprehensive suite of solutions to a broad range of technical issues in applying game theory and machine learning to solve cyber security challenges. Beginning with an introduction to foundational concepts in game theory, machine learning, cyber security, and cyber deception, the editors provide readers with resources that discuss the latest in hypergames, behavioral game theory, adversarial machine learning, generative adversarial networks, and multi-agent reinforcement learning. Readers will also enjoy: A thorough introduction to game theory for cyber deception, including scalable algorithms for identifying stealthy attackers in a game theoretic framework, honeypot allocation over attack graphs, and behavioral games for cyber deception An exploration of game theory for cyber security, including actionable game-theoretic adversarial intervention detection against advanced persistent threats Practical discussions of adversarial machine learning for cyber security, including adversarial machine learning in 5G security and machine learning-driven fault injection in cyber-physical systems In-depth examinations of generative models for cyber security Perfect for researchers, students, and experts in the fields of computer science and engineering, Game Theory and Machine Learning for Cyber Security is also an indispensable resource for industry professionals, military personnel, researchers, faculty, and students with an interest in cyber security.

Adversarial Machine Learning

Adversarial Machine Learning PDF Author: Anthony D. Joseph
Publisher: Cambridge University Press
ISBN: 1107043468
Category : Computers
Languages : en
Pages : 341

Get Book Here

Book Description
This study allows readers to get to grips with the conceptual tools and practical techniques for building robust machine learning in the face of adversaries.

Computer Vision in Sports

Computer Vision in Sports PDF Author: Thomas B. Moeslund
Publisher: Springer
ISBN: 3319093967
Category : Computers
Languages : en
Pages : 322

Get Book Here

Book Description
The first book of its kind devoted to this topic, this comprehensive text/reference presents state-of-the-art research and reviews current challenges in the application of computer vision to problems in sports. Opening with a detailed introduction to the use of computer vision across the entire life-cycle of a sports event, the text then progresses to examine cutting-edge techniques for tracking the ball, obtaining the whereabouts and pose of the players, and identifying the sport being played from video footage. The work concludes by investigating a selection of systems for the automatic analysis and classification of sports play. The insights provided by this pioneering collection will be of great interest to researchers and practitioners involved in computer vision, sports analysis and media production.

Utilizing Generative AI for Cyber Defense Strategies

Utilizing Generative AI for Cyber Defense Strategies PDF Author: Jhanjhi, Noor Zaman
Publisher: IGI Global
ISBN:
Category : Computers
Languages : en
Pages : 546

Get Book Here

Book Description
As cyber threats become increasingly sophisticated, the need for innovative defense strategies becomes urgent. Generative artificial intelligence (AI) offers a revolutionary approach to enhance cybersecurity. By utilizing advanced algorithms, data analysis, and machine learning, generative AI can simulate complex attack scenarios, identify vulnerabilities, and develop proactive defense mechanisms while adapting to modern-day cyber-attacks. AI strengthens current organizational security while offering quick, effective responses to emerging threats. Decisive strategies are needed to integrate generative AI into businesses defense strategies and protect organizations from attacks, secure digital data, and ensure safe business processes. Utilizing Generative AI for Cyber Defense Strategies explores the utilization of generative AI tools in organizational cyber security and defense. Strategies for effective threat detection and mitigation are presented, with an emphasis on deep learning, artificial intelligence, and Internet of Things (IoT) technology. This book covers topics such as cyber security, threat intelligence, and behavior analysis, and is a useful resource for computer engineers, security professionals, business owners, government officials, data analysts, academicians, scientists, and researchers.

Moving Target Defense

Moving Target Defense PDF Author: Sushil Jajodia
Publisher: Springer Science & Business Media
ISBN: 1461409772
Category : Computers
Languages : en
Pages : 196

Get Book Here

Book Description
Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats was developed by a group of leading researchers. It describes the fundamental challenges facing the research community and identifies new promising solution paths. Moving Target Defense which is motivated by the asymmetric costs borne by cyber defenders takes an advantage afforded to attackers and reverses it to advantage defenders. Moving Target Defense is enabled by technical trends in recent years, including virtualization and workload migration on commodity systems, widespread and redundant network connectivity, instruction set and address space layout randomization, just-in-time compilers, among other techniques. However, many challenging research problems remain to be solved, such as the security of virtualization infrastructures, secure and resilient techniques to move systems within a virtualized environment, automatic diversification techniques, automated ways to dynamically change and manage the configurations of systems and networks, quantification of security improvement, potential degradation and more. Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats is designed for advanced -level students and researchers focused on computer science, and as a secondary text book or reference. Professionals working in this field will also find this book valuable.

Explainable AI for Cybersecurity

Explainable AI for Cybersecurity PDF Author: Zhixin Pan
Publisher: Springer Nature
ISBN: 3031464796
Category : Technology & Engineering
Languages : en
Pages : 249

Get Book Here

Book Description
This book provides a comprehensive overview of security vulnerabilities and state-of-the-art countermeasures using explainable artificial intelligence (AI). Specifically, it describes how explainable AI can be effectively used for detection and mitigation of hardware vulnerabilities (e.g., hardware Trojans) as well as software attacks (e.g., malware and ransomware). It provides insights into the security threats towards machine learning models and presents effective countermeasures. It also explores hardware acceleration of explainable AI algorithms. The reader will be able to comprehend a complete picture of cybersecurity challenges and how to detect them using explainable AI. This book serves as a single source of reference for students, researchers, engineers, and practitioners for designing secure and trustworthy systems.

Ethical Dimensions of AI Development

Ethical Dimensions of AI Development PDF Author: Bhattacharya, Pronaya
Publisher: IGI Global
ISBN:
Category : Computers
Languages : en
Pages : 610

Get Book Here

Book Description
The digital age has witnessed the meteoric rise of artificial intelligence (AI), a paradigm-shifting technology that has redefined the boundaries of computation and decision-making. Initially, AI's journey began with basic rule-based systems, evolving into the current digital age is dominated by complex machine learning and deep learning models. The digital AI presence and progression has brought with it a myriad of ethical challenges, necessitating a rigorous examination of AI's role in complex and interconnected systems. Ethical Dimensions of AI Development notes that the core of these challenges are issues of privacy, transparency, and validity. AI's ability to process vast datasets can intrude on individual privacy, while opaque algorithmic decision-making processes can obscure transparency. Addressing these ethical concerns is crucial to fostering trust and ensuring the responsible use of AI technologies in society. Covering topics such as accountability, discrimination, and privacy and security, this book is an essential resource for AI researchers and developers, data scientists, ethicists, policy makers, legal professionals, technology industry leaders, and more.

Beyond AI

Beyond AI PDF Author: Ken Huang
Publisher: Springer Nature
ISBN: 3031452828
Category : Business & Economics
Languages : en
Pages : 412

Get Book Here

Book Description
This book explores the transformative potential of ChatGPT, Web3, and their impact on productivity and various industries. It delves into Generative AI (GenAI) and its representative platform ChatGPT, their synergy with Web3, and how they can revolutionize business operations. It covers the potential impact surpassing prior industrial revolutions. After providing an overview of GenAI, ChatGPT, and Web3, it investigates business applications in various industries and areas, such as product management, finance, real estate, gaming, and government, highlighting value creation and operational revolution through their integration. It also explores their impact on content generation, customer service, personalization, and data analysis and examines how the technologies can enhance content quality, customer experiences, sales, revenue, and resource efficiency. Moreover, it addresses security, privacy, and ethics concerns, emphasizing the responsible implementation of ChatGPT and Web3. Written by experts in this field, this book is aimed at business leaders, entrepreneurs, students, investors, and professionals who are seeking insights into ChatGPT, ChatGPT Plug-in, GPT-based autonomous agents, and the integration of Gen AI and Web3 in business applications.

The Future of Artificial Intelligence

The Future of Artificial Intelligence PDF Author: R.H Rizvi
Publisher: R.H Rizvi
ISBN:
Category : Computers
Languages : en
Pages : 60

Get Book Here

Book Description
The Future of Artificial Intelligence delves into the transformative potential and profound implications of artificial intelligence on various facets of human life and industry. This comprehensive book explores the historical evolution of AI, the core technologies driving advancements, and the diverse applications across sectors such as healthcare, finance, education, and transportation. Each chapter meticulously examines the opportunities AI presents for innovation and societal impact, while also addressing the ethical considerations, privacy concerns, and economic disruptions associated with its rapid development. By integrating insights from experts and case studies, this book provides a balanced perspective on the promise and challenges of AI, offering readers a thoughtful analysis of how AI can shape a sustainable and inclusive future.