Author: Cindy P. Veenstra
Publisher: Quality Press
ISBN: 1636940498
Category : Education
Languages : en
Pages : 310
Book Description
In July 2011, the ASQ Education Division held its first Advancing the STEM (Science, Technology, Engineering, and Mathematics) Agenda in Education, the Workplace, and Society Conference at the University of Wisconsin–Stout. This publication is a selection of papers and workshops from this groundbreaking conference. The ideas presented here will help other educators and policy makers to develop their own innovative high-impact ideas for inspiring student interest in STEM careers, improving the delivery of STEM education at their schools and colleges, and helping STEM college graduates transition to the workplace. The chapters in this book reflect research and best practices, integrating the ideas of continuous improvement in combination with a can-do attitude, to provide a valuable resource that will lead others to consider similar innovative and collaborative educational structures that will drive more interest in STEM majors in college, and provide for our next generation of scientists, technicians, and engineers. ”Prior to reviewing Advancing the STEM Agenda I had a list in my mind of topics that I hoped would be addressed. I’m very pleased with how many are covered—and covered well. This project succeeds at the challenge of providing not only beneficial breadth but also important depth. Because our public-private partnership has been committed explicitly to continuous improvement for more than a decade, I couldn’t help but notice (as the editors also point out in their conclusion) the extent to which continuous improvement is a ‘common thread’ throughout the book. That speaks to the book’s practical utility in many settings, and on a long-term basis. No less valuable is the discussion of student motivation by many of the authors, which STEM teachers in our area have identified as a major issue of interest to them in recent surveys." Richard Bogovich Executive Director Rochester Area Math Science Partnership, Minnesota. "Veenstra, Padró, and Furst-Bowe provide a huge contribution to the field of STEM education. We all know the statistics and of the huge need in the area of STEM students and education, but what has been missing are application and success stories backed by research and modeling. The editors have successfully contributed to our need by focusing on collaborative models, building the K-12 pipeline, showing what works at the collegiate level, connecting across gender issues, and illustrating workforce and innovative ideas." John J. Jasinski President Northwest Missouri State University "Advancing the STEM Agenda provides a broad set of current perspectives that will contribute in many ways to advancing the understanding and enhancement of education in science, education, and engineering. This work is packed with insights and perspectives from experienced educators and bridges the transition from education to workplace." John Dew Senior Vice Chancellor Troy University
Advancing the STEM Agenda
Author: Cindy P. Veenstra
Publisher: Quality Press
ISBN: 1636940498
Category : Education
Languages : en
Pages : 310
Book Description
In July 2011, the ASQ Education Division held its first Advancing the STEM (Science, Technology, Engineering, and Mathematics) Agenda in Education, the Workplace, and Society Conference at the University of Wisconsin–Stout. This publication is a selection of papers and workshops from this groundbreaking conference. The ideas presented here will help other educators and policy makers to develop their own innovative high-impact ideas for inspiring student interest in STEM careers, improving the delivery of STEM education at their schools and colleges, and helping STEM college graduates transition to the workplace. The chapters in this book reflect research and best practices, integrating the ideas of continuous improvement in combination with a can-do attitude, to provide a valuable resource that will lead others to consider similar innovative and collaborative educational structures that will drive more interest in STEM majors in college, and provide for our next generation of scientists, technicians, and engineers. ”Prior to reviewing Advancing the STEM Agenda I had a list in my mind of topics that I hoped would be addressed. I’m very pleased with how many are covered—and covered well. This project succeeds at the challenge of providing not only beneficial breadth but also important depth. Because our public-private partnership has been committed explicitly to continuous improvement for more than a decade, I couldn’t help but notice (as the editors also point out in their conclusion) the extent to which continuous improvement is a ‘common thread’ throughout the book. That speaks to the book’s practical utility in many settings, and on a long-term basis. No less valuable is the discussion of student motivation by many of the authors, which STEM teachers in our area have identified as a major issue of interest to them in recent surveys." Richard Bogovich Executive Director Rochester Area Math Science Partnership, Minnesota. "Veenstra, Padró, and Furst-Bowe provide a huge contribution to the field of STEM education. We all know the statistics and of the huge need in the area of STEM students and education, but what has been missing are application and success stories backed by research and modeling. The editors have successfully contributed to our need by focusing on collaborative models, building the K-12 pipeline, showing what works at the collegiate level, connecting across gender issues, and illustrating workforce and innovative ideas." John J. Jasinski President Northwest Missouri State University "Advancing the STEM Agenda provides a broad set of current perspectives that will contribute in many ways to advancing the understanding and enhancement of education in science, education, and engineering. This work is packed with insights and perspectives from experienced educators and bridges the transition from education to workplace." John Dew Senior Vice Chancellor Troy University
Publisher: Quality Press
ISBN: 1636940498
Category : Education
Languages : en
Pages : 310
Book Description
In July 2011, the ASQ Education Division held its first Advancing the STEM (Science, Technology, Engineering, and Mathematics) Agenda in Education, the Workplace, and Society Conference at the University of Wisconsin–Stout. This publication is a selection of papers and workshops from this groundbreaking conference. The ideas presented here will help other educators and policy makers to develop their own innovative high-impact ideas for inspiring student interest in STEM careers, improving the delivery of STEM education at their schools and colleges, and helping STEM college graduates transition to the workplace. The chapters in this book reflect research and best practices, integrating the ideas of continuous improvement in combination with a can-do attitude, to provide a valuable resource that will lead others to consider similar innovative and collaborative educational structures that will drive more interest in STEM majors in college, and provide for our next generation of scientists, technicians, and engineers. ”Prior to reviewing Advancing the STEM Agenda I had a list in my mind of topics that I hoped would be addressed. I’m very pleased with how many are covered—and covered well. This project succeeds at the challenge of providing not only beneficial breadth but also important depth. Because our public-private partnership has been committed explicitly to continuous improvement for more than a decade, I couldn’t help but notice (as the editors also point out in their conclusion) the extent to which continuous improvement is a ‘common thread’ throughout the book. That speaks to the book’s practical utility in many settings, and on a long-term basis. No less valuable is the discussion of student motivation by many of the authors, which STEM teachers in our area have identified as a major issue of interest to them in recent surveys." Richard Bogovich Executive Director Rochester Area Math Science Partnership, Minnesota. "Veenstra, Padró, and Furst-Bowe provide a huge contribution to the field of STEM education. We all know the statistics and of the huge need in the area of STEM students and education, but what has been missing are application and success stories backed by research and modeling. The editors have successfully contributed to our need by focusing on collaborative models, building the K-12 pipeline, showing what works at the collegiate level, connecting across gender issues, and illustrating workforce and innovative ideas." John J. Jasinski President Northwest Missouri State University "Advancing the STEM Agenda provides a broad set of current perspectives that will contribute in many ways to advancing the understanding and enhancement of education in science, education, and engineering. This work is packed with insights and perspectives from experienced educators and bridges the transition from education to workplace." John Dew Senior Vice Chancellor Troy University
STEM Integration in K-12 Education
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309297990
Category : Education
Languages : en
Pages : 143
Book Description
STEM Integration in K-12 Education examines current efforts to connect the STEM disciplines in K-12 education. This report identifies and characterizes existing approaches to integrated STEM education, both in formal and after- and out-of-school settings. The report reviews the evidence for the impact of integrated approaches on various student outcomes, and it proposes a set of priority research questions to advance the understanding of integrated STEM education. STEM Integration in K-12 Education proposes a framework to provide a common perspective and vocabulary for researchers, practitioners, and others to identify, discuss, and investigate specific integrated STEM initiatives within the K-12 education system of the United States. STEM Integration in K-12 Education makes recommendations for designers of integrated STEM experiences, assessment developers, and researchers to design and document effective integrated STEM education. This report will help to further their work and improve the chances that some forms of integrated STEM education will make a positive difference in student learning and interest and other valued outcomes.
Publisher: National Academies Press
ISBN: 0309297990
Category : Education
Languages : en
Pages : 143
Book Description
STEM Integration in K-12 Education examines current efforts to connect the STEM disciplines in K-12 education. This report identifies and characterizes existing approaches to integrated STEM education, both in formal and after- and out-of-school settings. The report reviews the evidence for the impact of integrated approaches on various student outcomes, and it proposes a set of priority research questions to advance the understanding of integrated STEM education. STEM Integration in K-12 Education proposes a framework to provide a common perspective and vocabulary for researchers, practitioners, and others to identify, discuss, and investigate specific integrated STEM initiatives within the K-12 education system of the United States. STEM Integration in K-12 Education makes recommendations for designers of integrated STEM experiences, assessment developers, and researchers to design and document effective integrated STEM education. This report will help to further their work and improve the chances that some forms of integrated STEM education will make a positive difference in student learning and interest and other valued outcomes.
Successful K-12 STEM Education
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309213002
Category : Education
Languages : en
Pages : 44
Book Description
Science, technology, engineering, and mathematics (STEM) are cultural achievements that reflect our humanity, power our economy, and constitute fundamental aspects of our lives as citizens, consumers, parents, and members of the workforce. Providing all students with access to quality education in the STEM disciplines is important to our nation's competitiveness. However, it is challenging to identify the most successful schools and approaches in the STEM disciplines because success is defined in many ways and can occur in many different types of schools and settings. In addition, it is difficult to determine whether the success of a school's students is caused by actions the school takes or simply related to the population of students in the school. Successful K-12 STEM Education defines a framework for understanding "success" in K-12 STEM education. The book focuses its analysis on the science and mathematics parts of STEM and outlines criteria for identifying effective STEM schools and programs. Because a school's success should be defined by and measured relative to its goals, the book identifies three important goals that share certain elements, including learning STEM content and practices, developing positive dispositions toward STEM, and preparing students to be lifelong learners. A successful STEM program would increase the number of students who ultimately pursue advanced degrees and careers in STEM fields, enhance the STEM-capable workforce, and boost STEM literacy for all students. It is also critical to broaden the participation of women and minorities in STEM fields. Successful K-12 STEM Education examines the vast landscape of K-12 STEM education by considering different school models, highlighting research on effective STEM education practices, and identifying some conditions that promote and limit school- and student-level success in STEM. The book also looks at where further work is needed to develop appropriate data sources. The book will serve as a guide to policy makers; decision makers at the school and district levels; local, state, and federal government agencies; curriculum developers; educators; and parent and education advocacy groups.
Publisher: National Academies Press
ISBN: 0309213002
Category : Education
Languages : en
Pages : 44
Book Description
Science, technology, engineering, and mathematics (STEM) are cultural achievements that reflect our humanity, power our economy, and constitute fundamental aspects of our lives as citizens, consumers, parents, and members of the workforce. Providing all students with access to quality education in the STEM disciplines is important to our nation's competitiveness. However, it is challenging to identify the most successful schools and approaches in the STEM disciplines because success is defined in many ways and can occur in many different types of schools and settings. In addition, it is difficult to determine whether the success of a school's students is caused by actions the school takes or simply related to the population of students in the school. Successful K-12 STEM Education defines a framework for understanding "success" in K-12 STEM education. The book focuses its analysis on the science and mathematics parts of STEM and outlines criteria for identifying effective STEM schools and programs. Because a school's success should be defined by and measured relative to its goals, the book identifies three important goals that share certain elements, including learning STEM content and practices, developing positive dispositions toward STEM, and preparing students to be lifelong learners. A successful STEM program would increase the number of students who ultimately pursue advanced degrees and careers in STEM fields, enhance the STEM-capable workforce, and boost STEM literacy for all students. It is also critical to broaden the participation of women and minorities in STEM fields. Successful K-12 STEM Education examines the vast landscape of K-12 STEM education by considering different school models, highlighting research on effective STEM education practices, and identifying some conditions that promote and limit school- and student-level success in STEM. The book also looks at where further work is needed to develop appropriate data sources. The book will serve as a guide to policy makers; decision makers at the school and district levels; local, state, and federal government agencies; curriculum developers; educators; and parent and education advocacy groups.
Improving Urban Schools
Author: Chance W. Lewis
Publisher: IAP
ISBN: 1623962323
Category : Education
Languages : en
Pages : 208
Book Description
Although STEM (Science, Technology, Engineering, and Mathematics) has been diversely defined by various researchers (e.g. Buck Institute, 2003; Capraro & Slough, 2009; Scott, 2009; Wolf, 2008), during the last decade, STEM education has gained an increasing presence on the national agenda through initiatives from the National Science Foundation (NSF) and the Institute for Educational Sciences (IES). The rate of technological innovation and change has been tremendous over the past ten years, and this rapid increase will only continue. STEM literacy is the power to “identify, apply, and integrate concepts from science, technology, engineering, and mathematics to understand complex problems and to innovate to solve them” (Washington State STEM, 2011, Internet). In order for U.S. students to be on the forefront of this revolution, ALL of our schools need to be part of the STEM vision and guide students in acquiring STEM literacy. Understanding and addressing the challenge of achieving STEM literacy for ALL students begins with an understanding of its element and the connections between them. In order to remain competitive, the Committee on Prospering in the Global Economy has recommended that the US optimize “its knowledge-based resources, particularly in science and technology” (National Academies, 2007, p. 4). Optimizing knowledge-based resources needs to be the goal but is also a challenge for ALL educators (Scheurich & Huggins, 2009). Regardless, there is little disagreement that contemporary society is increasingly dependent on science, technology, engineering, and mathematics and thus comprehensive understandings are essential for those pursuing STEM careers. It is also generally agreed that PK-12 students do not do well in STEM areas, both in terms of national standards and in terms of international comparisons (Kuenzi, Matthews, & Mangan, 2006; Capraro, Capraro, Yetkiner, Corlu, Ozel, Ye, & Kim, 2011). The question then becomes what might PK-12 schools do to improve teachers’ and students’ STEM knowledge and skills? This book will look at equity and access issues in STEM education from PK-12, university, and administrative and policy lenses.
Publisher: IAP
ISBN: 1623962323
Category : Education
Languages : en
Pages : 208
Book Description
Although STEM (Science, Technology, Engineering, and Mathematics) has been diversely defined by various researchers (e.g. Buck Institute, 2003; Capraro & Slough, 2009; Scott, 2009; Wolf, 2008), during the last decade, STEM education has gained an increasing presence on the national agenda through initiatives from the National Science Foundation (NSF) and the Institute for Educational Sciences (IES). The rate of technological innovation and change has been tremendous over the past ten years, and this rapid increase will only continue. STEM literacy is the power to “identify, apply, and integrate concepts from science, technology, engineering, and mathematics to understand complex problems and to innovate to solve them” (Washington State STEM, 2011, Internet). In order for U.S. students to be on the forefront of this revolution, ALL of our schools need to be part of the STEM vision and guide students in acquiring STEM literacy. Understanding and addressing the challenge of achieving STEM literacy for ALL students begins with an understanding of its element and the connections between them. In order to remain competitive, the Committee on Prospering in the Global Economy has recommended that the US optimize “its knowledge-based resources, particularly in science and technology” (National Academies, 2007, p. 4). Optimizing knowledge-based resources needs to be the goal but is also a challenge for ALL educators (Scheurich & Huggins, 2009). Regardless, there is little disagreement that contemporary society is increasingly dependent on science, technology, engineering, and mathematics and thus comprehensive understandings are essential for those pursuing STEM careers. It is also generally agreed that PK-12 students do not do well in STEM areas, both in terms of national standards and in terms of international comparisons (Kuenzi, Matthews, & Mangan, 2006; Capraro, Capraro, Yetkiner, Corlu, Ozel, Ye, & Kim, 2011). The question then becomes what might PK-12 schools do to improve teachers’ and students’ STEM knowledge and skills? This book will look at equity and access issues in STEM education from PK-12, university, and administrative and policy lenses.
Women of Color In STEM
Author: Beverly Irby
Publisher: IAP
ISBN: 1648023711
Category : Education
Languages : en
Pages : 181
Book Description
Though there has been a rapid increase of women’s representation in law and business, their representation in STEM fields has not been matched. Researchers have revealed that there are several environmental and social barriers including stereotypes, gender bias, and the climate of science and engineering departments in colleges and universities that continue to block women’s progress in STEM. In this book, the authors address the issues that encounter women of color in STEM in higher education.
Publisher: IAP
ISBN: 1648023711
Category : Education
Languages : en
Pages : 181
Book Description
Though there has been a rapid increase of women’s representation in law and business, their representation in STEM fields has not been matched. Researchers have revealed that there are several environmental and social barriers including stereotypes, gender bias, and the climate of science and engineering departments in colleges and universities that continue to block women’s progress in STEM. In this book, the authors address the issues that encounter women of color in STEM in higher education.
English Learners in STEM Subjects
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309479088
Category : Education
Languages : en
Pages : 345
Book Description
The imperative that all students, including English learners (ELs), achieve high academic standards and have opportunities to participate in science, technology, engineering, and mathematics (STEM) learning has become even more urgent and complex given shifts in science and mathematics standards. As a group, these students are underrepresented in STEM fields in college and in the workforce at a time when the demand for workers and professionals in STEM fields is unmet and increasing. However, English learners bring a wealth of resources to STEM learning, including knowledge and interest in STEM-related content that is born out of their experiences in their homes and communities, home languages, variation in discourse practices, and, in some cases, experiences with schooling in other countries. English Learners in STEM Subjects: Transforming Classrooms, Schools, and Lives examines the research on ELs' learning, teaching, and assessment in STEM subjects and provides guidance on how to improve learning outcomes in STEM for these students. This report considers the complex social and academic use of language delineated in the new mathematics and science standards, the diversity of the population of ELs, and the integration of English as a second language instruction with core instructional programs in STEM.
Publisher: National Academies Press
ISBN: 0309479088
Category : Education
Languages : en
Pages : 345
Book Description
The imperative that all students, including English learners (ELs), achieve high academic standards and have opportunities to participate in science, technology, engineering, and mathematics (STEM) learning has become even more urgent and complex given shifts in science and mathematics standards. As a group, these students are underrepresented in STEM fields in college and in the workforce at a time when the demand for workers and professionals in STEM fields is unmet and increasing. However, English learners bring a wealth of resources to STEM learning, including knowledge and interest in STEM-related content that is born out of their experiences in their homes and communities, home languages, variation in discourse practices, and, in some cases, experiences with schooling in other countries. English Learners in STEM Subjects: Transforming Classrooms, Schools, and Lives examines the research on ELs' learning, teaching, and assessment in STEM subjects and provides guidance on how to improve learning outcomes in STEM for these students. This report considers the complex social and academic use of language delineated in the new mathematics and science standards, the diversity of the population of ELs, and the integration of English as a second language instruction with core instructional programs in STEM.
Monitoring Progress Toward Successful K-12 STEM Education
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309264812
Category : Education
Languages : en
Pages : 65
Book Description
Following a 2011 report by the National Research Council (NRC) on successful K-12 education in science, technology, engineering, and mathematics (STEM), Congress asked the National Science Foundation to identify methods for tracking progress toward the report's recommendations. In response, the NRC convened the Committee on an Evaluation Framework for Successful K-12 STEM Education to take on this assignment. The committee developed 14 indicators linked to the 2011 report's recommendations. By providing a focused set of key indicators related to students' access to quality learning, educator's capacity, and policy and funding initiatives in STEM, the committee addresses the need for research and data that can be used to monitor progress in K-12 STEM education and make informed decisions about improving it. The recommended indicators provide a framework for Congress and relevant deferral agencies to create and implement a national-level monitoring and reporting system that: assesses progress toward key improvements recommended by a previous National Research Council (2011) committee; measures student knowledge, interest, and participation in the STEM disciplines and STEM-related activities; tracks financial, human capital, and material investments in K-12 STEM education at the federal, state, and local levels; provides information about the capabilities of the STEM education workforce, including teachers and principals; and facilitates strategic planning for federal investments in STEM education and workforce development when used with labor force projections. All 14 indicators explained in this report are intended to form the core of this system. Monitoring Progress Toward Successful K-12 STEM Education: A Nation Advancing? summarizes the 14 indicators and tracks progress towards the initial report's recommendations.
Publisher: National Academies Press
ISBN: 0309264812
Category : Education
Languages : en
Pages : 65
Book Description
Following a 2011 report by the National Research Council (NRC) on successful K-12 education in science, technology, engineering, and mathematics (STEM), Congress asked the National Science Foundation to identify methods for tracking progress toward the report's recommendations. In response, the NRC convened the Committee on an Evaluation Framework for Successful K-12 STEM Education to take on this assignment. The committee developed 14 indicators linked to the 2011 report's recommendations. By providing a focused set of key indicators related to students' access to quality learning, educator's capacity, and policy and funding initiatives in STEM, the committee addresses the need for research and data that can be used to monitor progress in K-12 STEM education and make informed decisions about improving it. The recommended indicators provide a framework for Congress and relevant deferral agencies to create and implement a national-level monitoring and reporting system that: assesses progress toward key improvements recommended by a previous National Research Council (2011) committee; measures student knowledge, interest, and participation in the STEM disciplines and STEM-related activities; tracks financial, human capital, and material investments in K-12 STEM education at the federal, state, and local levels; provides information about the capabilities of the STEM education workforce, including teachers and principals; and facilitates strategic planning for federal investments in STEM education and workforce development when used with labor force projections. All 14 indicators explained in this report are intended to form the core of this system. Monitoring Progress Toward Successful K-12 STEM Education: A Nation Advancing? summarizes the 14 indicators and tracks progress towards the initial report's recommendations.
Advancing and Consolidating Mathematical Modelling
Author: Gilbert Greefrath
Publisher: Springer Nature
ISBN: 3031271157
Category : Education
Languages : en
Pages : 347
Book Description
This edited volume presents applications and modelling as a world-renowned sub-field of research in mathematics education. It includes the discussion on students’ development of modelling competency through the teaching of applications and modelling. The teaching of mathematical modelling is considered from different perspectives, such as mathematical, pedagogical-didactical perspectives and critical-societal or socio-political perspectives. Assessment practices (local, regional or international) of modelling activities and difficulties with modelling activities at school and university levels, respectively, are discussed. Use of technology and other resources in modelling activities and their impact on the modelling processes are included in the considerations. Teaching practices, teacher education and professional development programs concerning the integration of applications and modelling in school and university mathematics programs are developed in this context.
Publisher: Springer Nature
ISBN: 3031271157
Category : Education
Languages : en
Pages : 347
Book Description
This edited volume presents applications and modelling as a world-renowned sub-field of research in mathematics education. It includes the discussion on students’ development of modelling competency through the teaching of applications and modelling. The teaching of mathematical modelling is considered from different perspectives, such as mathematical, pedagogical-didactical perspectives and critical-societal or socio-political perspectives. Assessment practices (local, regional or international) of modelling activities and difficulties with modelling activities at school and university levels, respectively, are discussed. Use of technology and other resources in modelling activities and their impact on the modelling processes are included in the considerations. Teaching practices, teacher education and professional development programs concerning the integration of applications and modelling in school and university mathematics programs are developed in this context.
Cracking the code
Author: UNESCO
Publisher: UNESCO Publishing
ISBN: 9231002333
Category :
Languages : en
Pages : 82
Book Description
This report aims to 'crack the code' by deciphering the factors that hinder and facilitate girls' and women's participation, achievement and continuation in science, technology, engineering and mathematics (STEM) education and, in particular, what the education sector can do to promote girls' and women's interest in and engagement with STEM education and ultimately STEM careers.
Publisher: UNESCO Publishing
ISBN: 9231002333
Category :
Languages : en
Pages : 82
Book Description
This report aims to 'crack the code' by deciphering the factors that hinder and facilitate girls' and women's participation, achievement and continuation in science, technology, engineering and mathematics (STEM) education and, in particular, what the education sector can do to promote girls' and women's interest in and engagement with STEM education and ultimately STEM careers.
STEM Education: An Emerging Field of Inquiry
Author:
Publisher: BRILL
ISBN: 900439141X
Category : Education
Languages : en
Pages : 249
Book Description
The second decade of the 21st century has seen governments and industry globally intensify their focus on the role of science, technology, engineering and mathematics (STEM) as a vehicle for future economic prosperity. Economic opportunities for new industries that are emerging from technological advances, such as those emerging from the field of artificial intelligence also require greater capabilities in science, mathematics, engineering and technologies. In response to such opportunities and challenges, government policies that position STEM as a critical driver of economic prosperity have burgeoned in recent years. Common to all these policies are consistent messages that STEM related industries are the key to future international competitiveness, productivity and economic prosperity. This book presents a contemporary focus on significant issues in STEM teaching, learning and research that are valuable in preparing students for a digital 21st century. The book chapters cover a wide spectrum of issues and topics using a wealth of research methodologies and methods ranging from STEM definitions to virtual reality in the classroom; multiplicative thinking; STEM in pre-school, primary, secondary and tertiary education, opportunities and obstacles in STEM; inquiry-based learning in statistics; values in STEM education and building academic leadership in STEM. The book is an important representation of some of the work currently being done by research-active academics. It will appeal to academics, researchers, teacher educators, educational administrators, teachers and anyone interested in contemporary STEM Education related research in a rapidly changing globally interconnected world. Contributors are: Natalie Banks, Anastasios (Tasos) Barkatsas, Amanda Berry, Lisa Borgerding, Nicky Carr, Io Keong Cheong, Grant Cooper, Jan van Driel, Jennifer Earle, Susan Fraser, Noleine Fitzallen, Tricia Forrester, Helen Georgiou, Andrew Gilbert, Ineke Henze, Linda Hobbs, Sarah Howard, Sylvia Sao Leng Ieong, Chunlian Jiang, Kathy Jordan, Belinda Kennedy, Zsolt Lavicza, Tricia Mclaughlin, Wendy Nielsen, Shalveena Prasad, Theodosia Prodromou, Wee Tiong Seah, Dianne Siemon, Li Ping Thong, Tessa E. Vossen and Marc J. de Vries.
Publisher: BRILL
ISBN: 900439141X
Category : Education
Languages : en
Pages : 249
Book Description
The second decade of the 21st century has seen governments and industry globally intensify their focus on the role of science, technology, engineering and mathematics (STEM) as a vehicle for future economic prosperity. Economic opportunities for new industries that are emerging from technological advances, such as those emerging from the field of artificial intelligence also require greater capabilities in science, mathematics, engineering and technologies. In response to such opportunities and challenges, government policies that position STEM as a critical driver of economic prosperity have burgeoned in recent years. Common to all these policies are consistent messages that STEM related industries are the key to future international competitiveness, productivity and economic prosperity. This book presents a contemporary focus on significant issues in STEM teaching, learning and research that are valuable in preparing students for a digital 21st century. The book chapters cover a wide spectrum of issues and topics using a wealth of research methodologies and methods ranging from STEM definitions to virtual reality in the classroom; multiplicative thinking; STEM in pre-school, primary, secondary and tertiary education, opportunities and obstacles in STEM; inquiry-based learning in statistics; values in STEM education and building academic leadership in STEM. The book is an important representation of some of the work currently being done by research-active academics. It will appeal to academics, researchers, teacher educators, educational administrators, teachers and anyone interested in contemporary STEM Education related research in a rapidly changing globally interconnected world. Contributors are: Natalie Banks, Anastasios (Tasos) Barkatsas, Amanda Berry, Lisa Borgerding, Nicky Carr, Io Keong Cheong, Grant Cooper, Jan van Driel, Jennifer Earle, Susan Fraser, Noleine Fitzallen, Tricia Forrester, Helen Georgiou, Andrew Gilbert, Ineke Henze, Linda Hobbs, Sarah Howard, Sylvia Sao Leng Ieong, Chunlian Jiang, Kathy Jordan, Belinda Kennedy, Zsolt Lavicza, Tricia Mclaughlin, Wendy Nielsen, Shalveena Prasad, Theodosia Prodromou, Wee Tiong Seah, Dianne Siemon, Li Ping Thong, Tessa E. Vossen and Marc J. de Vries.