Advances In Pattern Recognition And Artificial Intelligence

Advances In Pattern Recognition And Artificial Intelligence PDF Author: Marleah Blom
Publisher: World Scientific
ISBN: 9811239029
Category : Computers
Languages : en
Pages : 277

Get Book Here

Book Description
This book includes reviewed papers by international scholars from the 2020 International Conference on Pattern Recognition and Artificial Intelligence (held online). The papers have been expanded to provide more details specifically for the book. It is geared to promote ongoing interest and understanding about pattern recognition and artificial intelligence. Like the previous book in the series, this book covers a range of topics and illustrates potential areas where pattern recognition and artificial intelligence can be applied. It highlights, for example, how pattern recognition and artificial intelligence can be used to classify, predict, detect and help promote further discoveries related to credit scores, criminal news, national elections, license plates, gender, personality characteristics, health, and more.Chapters include works centred on medical and financial applications as well as topics related to handwriting analysis and text processing, internet security, image analysis, database creation, neural networks and deep learning. While the book is geared to promote interest from the general public, it may also be of interest to graduate students and researchers in the field.

Advances In Pattern Recognition And Artificial Intelligence

Advances In Pattern Recognition And Artificial Intelligence PDF Author: Marleah Blom
Publisher: World Scientific
ISBN: 9811239029
Category : Computers
Languages : en
Pages : 277

Get Book Here

Book Description
This book includes reviewed papers by international scholars from the 2020 International Conference on Pattern Recognition and Artificial Intelligence (held online). The papers have been expanded to provide more details specifically for the book. It is geared to promote ongoing interest and understanding about pattern recognition and artificial intelligence. Like the previous book in the series, this book covers a range of topics and illustrates potential areas where pattern recognition and artificial intelligence can be applied. It highlights, for example, how pattern recognition and artificial intelligence can be used to classify, predict, detect and help promote further discoveries related to credit scores, criminal news, national elections, license plates, gender, personality characteristics, health, and more.Chapters include works centred on medical and financial applications as well as topics related to handwriting analysis and text processing, internet security, image analysis, database creation, neural networks and deep learning. While the book is geared to promote interest from the general public, it may also be of interest to graduate students and researchers in the field.

Progress in Artificial Intelligence and Pattern Recognition

Progress in Artificial Intelligence and Pattern Recognition PDF Author: Yanio Hernández Heredia
Publisher: Springer
ISBN: 9783030896904
Category : Computers
Languages : en
Pages : 446

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 7th International Workshop on Artificial Intelligence and Pattern Recognition, IWAIPR 2021, held in Havana, Cuba, in October 2021. The 42 full papers presented were carefully reviewed and selected from 73 submissions. The papers promote and disseminate ongoing research on mathematical methods and computing techniques for artificial intelligence and pattern recognition, in particular in bioinformatics, cognitive and humanoid vision, computer vision, image analysis and intelligent data analysis.

Pattern Recognition and Artificial Intelligence

Pattern Recognition and Artificial Intelligence PDF Author: Mass.) Joint Workshop on Pattern Recognition and Artificial Intelligence (1976 : Hyannis
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning PDF Author: Christopher M. Bishop
Publisher: Springer
ISBN: 9781493938438
Category : Computers
Languages : en
Pages : 0

Get Book Here

Book Description
This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.

Cross-disciplinary Applications of Artificial Intelligence and Pattern Recognition

Cross-disciplinary Applications of Artificial Intelligence and Pattern Recognition PDF Author: V. K. Mago
Publisher:
ISBN: 9781613504314
Category : Artificial intelligence
Languages : en
Pages : 754

Get Book Here

Book Description
"This book provides a common platform for researchers to present theoretical and applied research findings for enhancing and developing intelligent systems, discussing advances in and applications of pattern recognition technologies and artificial intelligence"--

Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications

Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications PDF Author: Alvaro Pardo
Publisher: Springer
ISBN: 331925751X
Category : Computers
Languages : en
Pages : 795

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 20th Iberoamerican Congress on Pattern Recognition, CIARP 2015, held in Montevideo, Uruguay, in November 2015. The 95 papers presented were carefully reviewed and selected from 185 submissions. The papers are organized in topical sections on applications on pattern recognition; biometrics; computer vision; gesture recognition; image classification and retrieval; image coding, processing and analysis; segmentation, analysis of shape and texture; signals analysis and processing; theory of pattern recognition; video analysis, segmentation and tracking.

Neural Networks for Pattern Recognition

Neural Networks for Pattern Recognition PDF Author: Christopher M. Bishop
Publisher: Oxford University Press
ISBN: 0198538642
Category : Computers
Languages : en
Pages : 501

Get Book Here

Book Description
Statistical pattern recognition; Probability density estimation; Single-layer networks; The multi-layer perceptron; Radial basis functions; Error functions; Parameter optimization algorithms; Pre-processing and feature extraction; Learning and generalization; Bayesian techniques; Appendix; References; Index.

Pattern Recognition by Self-organizing Neural Networks

Pattern Recognition by Self-organizing Neural Networks PDF Author: Gail A. Carpenter
Publisher: MIT Press
ISBN: 9780262031769
Category : Computers
Languages : en
Pages : 724

Get Book Here

Book Description
Pattern Recognition by Self-Organizing Neural Networks presentsthe most recent advances in an area of research that is becoming vitally important in the fields ofcognitive science, neuroscience, artificial intelligence, and neural networks in general. The 19articles take up developments in competitive learning and computational maps, adaptive resonancetheory, and specialized architectures and biological connections. Introductorysurvey articles provide a framework for understanding the many models involved in various approachesto studying neural networks. These are followed in Part 2 by articles that form the foundation formodels of competitive learning and computational mapping, and recent articles by Kohonen, applyingthem to problems in speech recognition, and by Hecht-Nielsen, applying them to problems in designingadaptive lookup tables. Articles in Part 3 focus on adaptive resonance theory (ART) networks,selforganizing pattern recognition systems whose top-down template feedback signals guarantee theirstable learning in response to arbitrary sequences of input patterns. In Part 4, articles describeembedding ART modules into larger architectures and provide experimental evidence fromneurophysiology, event-related potentials, and psychology that support the prediction that ARTmechanisms exist in the brain. Contributors: J.-P. Banquet, G.A. Carpenter, S.Grossberg, R. Hecht-Nielsen, T. Kohonen, B. Kosko, T.W. Ryan, N.A. Schmajuk, W. Singer, D. Stork, C.von der Malsburg, C.L. Winter.

Computational Intelligence in Pattern Recognition

Computational Intelligence in Pattern Recognition PDF Author: Asit Kumar Das
Publisher: Springer
ISBN: 9811390428
Category : Technology & Engineering
Languages : en
Pages : 1023

Get Book Here

Book Description
This book presents practical development experiences in different areas of data analysis and pattern recognition, focusing on soft computing technologies, clustering and classification algorithms, rough set and fuzzy set theory, evolutionary computations, neural science and neural network systems, image processing, combinatorial pattern matching, social network analysis, audio and video data analysis, data mining in dynamic environments, bioinformatics, hybrid computing, big data analytics and deep learning. It also provides innovative solutions to the challenges in these areas and discusses recent developments.

Decision Forests for Computer Vision and Medical Image Analysis

Decision Forests for Computer Vision and Medical Image Analysis PDF Author: Antonio Criminisi
Publisher: Springer Science & Business Media
ISBN: 1447149297
Category : Computers
Languages : en
Pages : 367

Get Book Here

Book Description
This practical and easy-to-follow text explores the theoretical underpinnings of decision forests, organizing the vast existing literature on the field within a new, general-purpose forest model. Topics and features: with a foreword by Prof. Y. Amit and Prof. D. Geman, recounting their participation in the development of decision forests; introduces a flexible decision forest model, capable of addressing a large and diverse set of image and video analysis tasks; investigates both the theoretical foundations and the practical implementation of decision forests; discusses the use of decision forests for such tasks as classification, regression, density estimation, manifold learning, active learning and semi-supervised classification; includes exercises and experiments throughout the text, with solutions, slides, demo videos and other supplementary material provided at an associated website; provides a free, user-friendly software library, enabling the reader to experiment with forests in a hands-on manner.