Author: Saeed Mian Qaisar
Publisher: Springer Nature
ISBN: 3031232399
Category : Computers
Languages : en
Pages : 385
Book Description
This book presents the modern technological advancements and revolutions in the biomedical sector. Progress in the contemporary sensing, Internet of Things (IoT) and machine learning algorithms and architectures have introduced new approaches in the mobile healthcare. A continuous observation of patients with critical health situation is required. It allows monitoring of their health status during daily life activities such as during sports, walking and sleeping. It is realizable by intelligently hybridizing the modern IoT framework, wireless biomedical implants and cloud computing. Such solutions are currently under development and in testing phases by healthcare and governmental institutions, research laboratories and biomedical companies. The biomedical signals such as electrocardiogram (ECG), electroencephalogram (EEG), Electromyography (EMG), phonocardiogram (PCG), Chronic Obstructive Pulmonary (COP), Electrooculography (EoG), photoplethysmography (PPG), and image modalities such as positron emission tomography (PET), magnetic resonance imaging (MRI) and computerized tomography (CT) are non-invasively acquired, measured, and processed via the biomedical sensors and gadgets. These signals and images represent the activities and conditions of human cardiovascular, neural, vision and cerebral systems. Multi-channel sensing of these signals and images with an appropriate granularity is required for an effective monitoring and diagnosis. It renders a big volume of data and its analysis is not feasible manually. Therefore, automated healthcare systems are in the process of evolution. These systems are mainly based on biomedical signal and image acquisition and sensing, preconditioning, features extraction and classification stages. The contemporary biomedical signal sensing, preconditioning, features extraction and intelligent machine and deep learning-based classification algorithms are described. Each chapter starts with the importance, problem statement and motivation. A self-sufficient description is provided. Therefore, each chapter can be read independently. To the best of the editors’ knowledge, this book is a comprehensive compilation on advances in non-invasive biomedical signal sensing and processing with machine and deep learning. We believe that theories, algorithms, realizations, applications, approaches, and challenges, which are presented in this book will have their impact and contribution in the design and development of modern and effective healthcare systems.
Advances in Non-Invasive Biomedical Signal Sensing and Processing with Machine Learning
Author: Saeed Mian Qaisar
Publisher: Springer Nature
ISBN: 3031232399
Category : Computers
Languages : en
Pages : 385
Book Description
This book presents the modern technological advancements and revolutions in the biomedical sector. Progress in the contemporary sensing, Internet of Things (IoT) and machine learning algorithms and architectures have introduced new approaches in the mobile healthcare. A continuous observation of patients with critical health situation is required. It allows monitoring of their health status during daily life activities such as during sports, walking and sleeping. It is realizable by intelligently hybridizing the modern IoT framework, wireless biomedical implants and cloud computing. Such solutions are currently under development and in testing phases by healthcare and governmental institutions, research laboratories and biomedical companies. The biomedical signals such as electrocardiogram (ECG), electroencephalogram (EEG), Electromyography (EMG), phonocardiogram (PCG), Chronic Obstructive Pulmonary (COP), Electrooculography (EoG), photoplethysmography (PPG), and image modalities such as positron emission tomography (PET), magnetic resonance imaging (MRI) and computerized tomography (CT) are non-invasively acquired, measured, and processed via the biomedical sensors and gadgets. These signals and images represent the activities and conditions of human cardiovascular, neural, vision and cerebral systems. Multi-channel sensing of these signals and images with an appropriate granularity is required for an effective monitoring and diagnosis. It renders a big volume of data and its analysis is not feasible manually. Therefore, automated healthcare systems are in the process of evolution. These systems are mainly based on biomedical signal and image acquisition and sensing, preconditioning, features extraction and classification stages. The contemporary biomedical signal sensing, preconditioning, features extraction and intelligent machine and deep learning-based classification algorithms are described. Each chapter starts with the importance, problem statement and motivation. A self-sufficient description is provided. Therefore, each chapter can be read independently. To the best of the editors’ knowledge, this book is a comprehensive compilation on advances in non-invasive biomedical signal sensing and processing with machine and deep learning. We believe that theories, algorithms, realizations, applications, approaches, and challenges, which are presented in this book will have their impact and contribution in the design and development of modern and effective healthcare systems.
Publisher: Springer Nature
ISBN: 3031232399
Category : Computers
Languages : en
Pages : 385
Book Description
This book presents the modern technological advancements and revolutions in the biomedical sector. Progress in the contemporary sensing, Internet of Things (IoT) and machine learning algorithms and architectures have introduced new approaches in the mobile healthcare. A continuous observation of patients with critical health situation is required. It allows monitoring of their health status during daily life activities such as during sports, walking and sleeping. It is realizable by intelligently hybridizing the modern IoT framework, wireless biomedical implants and cloud computing. Such solutions are currently under development and in testing phases by healthcare and governmental institutions, research laboratories and biomedical companies. The biomedical signals such as electrocardiogram (ECG), electroencephalogram (EEG), Electromyography (EMG), phonocardiogram (PCG), Chronic Obstructive Pulmonary (COP), Electrooculography (EoG), photoplethysmography (PPG), and image modalities such as positron emission tomography (PET), magnetic resonance imaging (MRI) and computerized tomography (CT) are non-invasively acquired, measured, and processed via the biomedical sensors and gadgets. These signals and images represent the activities and conditions of human cardiovascular, neural, vision and cerebral systems. Multi-channel sensing of these signals and images with an appropriate granularity is required for an effective monitoring and diagnosis. It renders a big volume of data and its analysis is not feasible manually. Therefore, automated healthcare systems are in the process of evolution. These systems are mainly based on biomedical signal and image acquisition and sensing, preconditioning, features extraction and classification stages. The contemporary biomedical signal sensing, preconditioning, features extraction and intelligent machine and deep learning-based classification algorithms are described. Each chapter starts with the importance, problem statement and motivation. A self-sufficient description is provided. Therefore, each chapter can be read independently. To the best of the editors’ knowledge, this book is a comprehensive compilation on advances in non-invasive biomedical signal sensing and processing with machine and deep learning. We believe that theories, algorithms, realizations, applications, approaches, and challenges, which are presented in this book will have their impact and contribution in the design and development of modern and effective healthcare systems.
Artificial Intelligence and Multimodal Signal Processing in Human-Machine Interaction
Author: Abdulhamit Subasi
Publisher: Elsevier
ISBN: 0443291519
Category : Science
Languages : en
Pages : 426
Book Description
Artificial Intelligence and Multimodal Signal Processing in Human-Machine Interaction presents an overview of an emerging field that is concerned with exploiting multiple modalities of communication in both Artificial Intelligence and Human-Machine Interaction. The book not only provides cross disciplinary research in the fields of multimodal signal acquisition and sensing, analysis, IoTs (Internet of Things), Artificial Intelligence, and system architectures, it also evaluates the role of Artificial Intelligence I in relation to the realization of contemporary Human Machine Interaction (HMI) systems.Readers are introduced to the multimodal signals and their role in the identification of the intended subjects, mental state and the realization of HMI systems are explored, and the applications of signal processing and machine/ensemble/deep learning for HMIs are assessed. A description of proposed methodologies is provided, and related works are also presented. This is a valuable resource for researchers, health professionals, postgraduate students, post doc researchers and faculty members in the fields of HMIs, Brain-Computer Interface (BCI), Prosthesis, Computer vision, and Mental state estimation, and all those who wish to broaden their knowledge in the allied field. - Covers advances in the multimodal signal processing and artificial intelligence assistive HMIs - Presents theories, algorithms, realizations, applications, approaches, and challenges that will have their impact and contribution in the design and development of modern and effective HMI (Human Machine Interaction) system - Presents different aspects of the multimodal signals, from the sensing to analysis using hardware/software, and making use of machine/ensemble/deep learning in the intended problem-solving
Publisher: Elsevier
ISBN: 0443291519
Category : Science
Languages : en
Pages : 426
Book Description
Artificial Intelligence and Multimodal Signal Processing in Human-Machine Interaction presents an overview of an emerging field that is concerned with exploiting multiple modalities of communication in both Artificial Intelligence and Human-Machine Interaction. The book not only provides cross disciplinary research in the fields of multimodal signal acquisition and sensing, analysis, IoTs (Internet of Things), Artificial Intelligence, and system architectures, it also evaluates the role of Artificial Intelligence I in relation to the realization of contemporary Human Machine Interaction (HMI) systems.Readers are introduced to the multimodal signals and their role in the identification of the intended subjects, mental state and the realization of HMI systems are explored, and the applications of signal processing and machine/ensemble/deep learning for HMIs are assessed. A description of proposed methodologies is provided, and related works are also presented. This is a valuable resource for researchers, health professionals, postgraduate students, post doc researchers and faculty members in the fields of HMIs, Brain-Computer Interface (BCI), Prosthesis, Computer vision, and Mental state estimation, and all those who wish to broaden their knowledge in the allied field. - Covers advances in the multimodal signal processing and artificial intelligence assistive HMIs - Presents theories, algorithms, realizations, applications, approaches, and challenges that will have their impact and contribution in the design and development of modern and effective HMI (Human Machine Interaction) system - Presents different aspects of the multimodal signals, from the sensing to analysis using hardware/software, and making use of machine/ensemble/deep learning in the intended problem-solving
Proceedings of Ninth International Congress on Information and Communication Technology
Author: Xin-She Yang
Publisher: Springer Nature
ISBN: 9819732891
Category :
Languages : en
Pages : 670
Book Description
Publisher: Springer Nature
ISBN: 9819732891
Category :
Languages : en
Pages : 670
Book Description
Textbook of Diabetes and Pregnancy
Author: Moshe Hod
Publisher: CRC Press
ISBN: 1040150578
Category : Medical
Languages : en
Pages : 460
Book Description
Written by a cadre of experts, this new edition provides a comprehensive, authoritative, and international view of gestational diabetes mellitus and will be invaluable to maternal-fetal medicine specialists, diabetologists, neonatologists, and a growing number of gynecologists and general physicians concerned with the management of noncommunicable diseases in pregnancy. Offers a comprehensive and authoritative guide to all aspects of the subject internationally Presents an invaluable resource for all working in diabetes, maternal-fetal medicine, and obstetrics Shows the latest developments in research in genomics and in practice with the digital clinic
Publisher: CRC Press
ISBN: 1040150578
Category : Medical
Languages : en
Pages : 460
Book Description
Written by a cadre of experts, this new edition provides a comprehensive, authoritative, and international view of gestational diabetes mellitus and will be invaluable to maternal-fetal medicine specialists, diabetologists, neonatologists, and a growing number of gynecologists and general physicians concerned with the management of noncommunicable diseases in pregnancy. Offers a comprehensive and authoritative guide to all aspects of the subject internationally Presents an invaluable resource for all working in diabetes, maternal-fetal medicine, and obstetrics Shows the latest developments in research in genomics and in practice with the digital clinic
Signal Processing Driven Machine Learning Techniques for Cardiovascular Data Processing
Author: Rajesh Kumar Tripathy
Publisher: Elsevier
ISBN: 0443141401
Category : Computers
Languages : en
Pages : 186
Book Description
Signal Processing Driven Machine Learning Techniques for Cardiovascular Data Processing features recent advances in machine learning coupled with new signal processing-based methods for cardiovascular data analysis. Topics in this book include machine learning methods such as supervised learning, unsupervised learning, semi-supervised learning, and meta-learning combined with different signal processing techniques such as multivariate data analysis, time-frequency analysis, multiscale analysis, and feature extraction techniques for the detection of cardiovascular diseases, heart valve disorders, hypertension, and activity monitoring using ECG, PPG, and PCG signals.In addition, this book also includes the applications of digital signal processing (time-frequency analysis, multiscale decomposition, feature extraction, non-linear analysis, and transform domain methods), machine learning and deep learning (convolutional neural network (CNN), recurrent neural network (RNN), transformer and attention-based models, etc.) techniques for the analysis of cardiac signals. The interpretable machine learning and deep learning models combined with signal processing for cardiovascular data analysis are also covered. - Provides details regarding the application of various signal processing and machine learning-based methods for cardiovascular signal analysis - Covers methodologies as well as experimental results and studies - Helps readers understand the use of different cardiac signals such as ECG, PCG, and PPG for the automated detection of heart ailments and other related biomedical applications
Publisher: Elsevier
ISBN: 0443141401
Category : Computers
Languages : en
Pages : 186
Book Description
Signal Processing Driven Machine Learning Techniques for Cardiovascular Data Processing features recent advances in machine learning coupled with new signal processing-based methods for cardiovascular data analysis. Topics in this book include machine learning methods such as supervised learning, unsupervised learning, semi-supervised learning, and meta-learning combined with different signal processing techniques such as multivariate data analysis, time-frequency analysis, multiscale analysis, and feature extraction techniques for the detection of cardiovascular diseases, heart valve disorders, hypertension, and activity monitoring using ECG, PPG, and PCG signals.In addition, this book also includes the applications of digital signal processing (time-frequency analysis, multiscale decomposition, feature extraction, non-linear analysis, and transform domain methods), machine learning and deep learning (convolutional neural network (CNN), recurrent neural network (RNN), transformer and attention-based models, etc.) techniques for the analysis of cardiac signals. The interpretable machine learning and deep learning models combined with signal processing for cardiovascular data analysis are also covered. - Provides details regarding the application of various signal processing and machine learning-based methods for cardiovascular signal analysis - Covers methodologies as well as experimental results and studies - Helps readers understand the use of different cardiac signals such as ECG, PCG, and PPG for the automated detection of heart ailments and other related biomedical applications
Non-Invasive Health Systems based on Advanced Biomedical Signal and Image Processing
Author: Adel Al-Jumaily
Publisher: CRC Press
ISBN: 1003838103
Category : Technology & Engineering
Languages : en
Pages : 475
Book Description
This book contains up-to-date noninvasive monitoring and diagnosing systems closely developed by a set of scientists, engineers, and physicians. The chapters are the results of different biomedical projects and theoretical studies that were coupled by simulations and real-world data. Non-Invasive Health Systems based on Advanced Biomedical Signal and Image Processing provides a multifaceted view of various biomedical and clinical approaches to health monitoring systems. The authors introduce advanced signal- and image-processing techniques as well as other noninvasive monitoring and diagnostic systems such as inertial sensors in wearable devices and novel algorithm-based hybrid learning systems for biosignal processing. The book includes a discussion of designing electronic circuits and systems for biomedical applications and analyzes several issues related to real-world data and how they relate to health technology including ECG signal monitoring and processing in the operating room. The authors also include detailed discussions of different systems for monitoring various conditions and diseases including sleep apnea, skin cancer, deep vein thrombosis, and prosthesis controls. This book is intended for a wide range of readers including scientists, researchers, physicians, and electronics and biomedical engineers. It will cover the gap between theory and real life applications.
Publisher: CRC Press
ISBN: 1003838103
Category : Technology & Engineering
Languages : en
Pages : 475
Book Description
This book contains up-to-date noninvasive monitoring and diagnosing systems closely developed by a set of scientists, engineers, and physicians. The chapters are the results of different biomedical projects and theoretical studies that were coupled by simulations and real-world data. Non-Invasive Health Systems based on Advanced Biomedical Signal and Image Processing provides a multifaceted view of various biomedical and clinical approaches to health monitoring systems. The authors introduce advanced signal- and image-processing techniques as well as other noninvasive monitoring and diagnostic systems such as inertial sensors in wearable devices and novel algorithm-based hybrid learning systems for biosignal processing. The book includes a discussion of designing electronic circuits and systems for biomedical applications and analyzes several issues related to real-world data and how they relate to health technology including ECG signal monitoring and processing in the operating room. The authors also include detailed discussions of different systems for monitoring various conditions and diseases including sleep apnea, skin cancer, deep vein thrombosis, and prosthesis controls. This book is intended for a wide range of readers including scientists, researchers, physicians, and electronics and biomedical engineers. It will cover the gap between theory and real life applications.
AI 2022: Advances in Artificial Intelligence
Author: Haris Aziz
Publisher: Springer Nature
ISBN: 303122695X
Category : Computers
Languages : en
Pages : 825
Book Description
This book constitutes the refereed proceedings of the 35th Australasian Joint Conference on Artificial Intelligence, AI 2022, which took place in Perth, WA, Australia, in December 5–8, 2022. The 56 full papers included in this book were carefully reviewed and selected from 90 submissions. They were organized in topical sections as follows: Computer Vision; Deep Learning; Ethical/Explainable AI; Genetic Algorithms; Knowledge Representation and NLP; Machine Learning; Medical AI; Optimization; and Reinforcement Learning.
Publisher: Springer Nature
ISBN: 303122695X
Category : Computers
Languages : en
Pages : 825
Book Description
This book constitutes the refereed proceedings of the 35th Australasian Joint Conference on Artificial Intelligence, AI 2022, which took place in Perth, WA, Australia, in December 5–8, 2022. The 56 full papers included in this book were carefully reviewed and selected from 90 submissions. They were organized in topical sections as follows: Computer Vision; Deep Learning; Ethical/Explainable AI; Genetic Algorithms; Knowledge Representation and NLP; Machine Learning; Medical AI; Optimization; and Reinforcement Learning.
Classification and Clustering in Biomedical Signal Processing
Author: Dey, Nilanjan
Publisher: IGI Global
ISBN: 152250141X
Category : Technology & Engineering
Languages : en
Pages : 502
Book Description
Advanced techniques in image processing have led to many innovations supporting the medical field, especially in the area of disease diagnosis. Biomedical imaging is an essential part of early disease detection and often considered a first step in the proper management of medical pathological conditions. Classification and Clustering in Biomedical Signal Processing focuses on existing and proposed methods for medical imaging, signal processing, and analysis for the purposes of diagnosing and monitoring patient conditions. Featuring the most recent empirical research findings in the areas of signal processing for biomedical applications with an emphasis on classification and clustering techniques, this essential publication is designed for use by medical professionals, IT developers, and advanced-level graduate students.
Publisher: IGI Global
ISBN: 152250141X
Category : Technology & Engineering
Languages : en
Pages : 502
Book Description
Advanced techniques in image processing have led to many innovations supporting the medical field, especially in the area of disease diagnosis. Biomedical imaging is an essential part of early disease detection and often considered a first step in the proper management of medical pathological conditions. Classification and Clustering in Biomedical Signal Processing focuses on existing and proposed methods for medical imaging, signal processing, and analysis for the purposes of diagnosing and monitoring patient conditions. Featuring the most recent empirical research findings in the areas of signal processing for biomedical applications with an emphasis on classification and clustering techniques, this essential publication is designed for use by medical professionals, IT developers, and advanced-level graduate students.
Biosignal Processing and Classification Using Computational Learning and Intelligence
Author: Alejandro A. Torres-García
Publisher: Academic Press
ISBN: 0128204281
Category : Science
Languages : en
Pages : 538
Book Description
Biosignal Processing and Classification Using Computational Learning and Intelligence: Principles, Algorithms and Applications posits an approach for biosignal processing and classification using computational learning and intelligence, highlighting that the term biosignal refers to all kinds of signals that can be continuously measured and monitored in living beings. The book is composed of five relevant parts. Part One is an introduction to biosignals and Part Two describes the relevant techniques for biosignal processing, feature extraction and feature selection/dimensionality reduction. Part Three presents the fundamentals of computational learning (machine learning). Then, the main techniques of computational intelligence are described in Part Four. The authors focus primarily on the explanation of the most used methods in the last part of this book, which is the most extensive portion of the book. This part consists of a recapitulation of the newest applications and reviews in which these techniques have been successfully applied to the biosignals' domain, including EEG-based Brain-Computer Interfaces (BCI) focused on P300 and Imagined Speech, emotion recognition from voice and video, leukemia recognition, infant cry recognition, EEGbased ADHD identification among others. - Provides coverage of the fundamentals of signal processing, including sensing the heart, sending the brain, sensing human acoustic, and sensing other organs - Includes coverage biosignal pre-processing techniques such as filtering, artifiact removal, and feature extraction techniques such as Fourier transform, wavelet transform, and MFCC - Covers the latest techniques in machine learning and computational intelligence, including Supervised Learning, common classifiers, feature selection, dimensionality reduction, fuzzy logic, neural networks, Deep Learning, bio-inspired algorithms, and Hybrid Systems - Written by engineers to help engineers, computer scientists, researchers, and clinicians understand the technology and applications of computational learning to biosignal processing
Publisher: Academic Press
ISBN: 0128204281
Category : Science
Languages : en
Pages : 538
Book Description
Biosignal Processing and Classification Using Computational Learning and Intelligence: Principles, Algorithms and Applications posits an approach for biosignal processing and classification using computational learning and intelligence, highlighting that the term biosignal refers to all kinds of signals that can be continuously measured and monitored in living beings. The book is composed of five relevant parts. Part One is an introduction to biosignals and Part Two describes the relevant techniques for biosignal processing, feature extraction and feature selection/dimensionality reduction. Part Three presents the fundamentals of computational learning (machine learning). Then, the main techniques of computational intelligence are described in Part Four. The authors focus primarily on the explanation of the most used methods in the last part of this book, which is the most extensive portion of the book. This part consists of a recapitulation of the newest applications and reviews in which these techniques have been successfully applied to the biosignals' domain, including EEG-based Brain-Computer Interfaces (BCI) focused on P300 and Imagined Speech, emotion recognition from voice and video, leukemia recognition, infant cry recognition, EEGbased ADHD identification among others. - Provides coverage of the fundamentals of signal processing, including sensing the heart, sending the brain, sensing human acoustic, and sensing other organs - Includes coverage biosignal pre-processing techniques such as filtering, artifiact removal, and feature extraction techniques such as Fourier transform, wavelet transform, and MFCC - Covers the latest techniques in machine learning and computational intelligence, including Supervised Learning, common classifiers, feature selection, dimensionality reduction, fuzzy logic, neural networks, Deep Learning, bio-inspired algorithms, and Hybrid Systems - Written by engineers to help engineers, computer scientists, researchers, and clinicians understand the technology and applications of computational learning to biosignal processing
Electromagnetic Brain Imaging
Author: Kensuke Sekihara
Publisher: Springer
ISBN: 3319149474
Category : Medical
Languages : en
Pages : 277
Book Description
This graduate level textbook provides a coherent introduction to the body of main-stream algorithms used in electromagnetic brain imaging, with specific emphasis on novel Bayesian algorithms. It helps readers to more easily understand literature in biomedical engineering and related fields and be ready to pursue research in either the engineering or the neuroscientific aspects of electromagnetic brain imaging. This textbook will not only appeal to graduate students but all scientists and engineers engaged in research on electromagnetic brain imaging.
Publisher: Springer
ISBN: 3319149474
Category : Medical
Languages : en
Pages : 277
Book Description
This graduate level textbook provides a coherent introduction to the body of main-stream algorithms used in electromagnetic brain imaging, with specific emphasis on novel Bayesian algorithms. It helps readers to more easily understand literature in biomedical engineering and related fields and be ready to pursue research in either the engineering or the neuroscientific aspects of electromagnetic brain imaging. This textbook will not only appeal to graduate students but all scientists and engineers engaged in research on electromagnetic brain imaging.