Advances in Mathematical Inequalities and Applications

Advances in Mathematical Inequalities and Applications PDF Author: Praveen Agarwal
Publisher: Springer
ISBN: 9811330131
Category : Mathematics
Languages : en
Pages : 351

Get Book Here

Book Description
This book is a collection of original research and survey articles on mathematical inequalities and their numerous applications in diverse areas of mathematics and engineering. It includes chapters on convexity and related concepts; inequalities for mean values, sums, functions, operators, functionals, integrals and their applications in various branches of mathematics and related sciences; fractional integral inequalities; and weighted type integral inequalities. It also presents their wide applications in biomathematics, boundary value problems, mechanics, queuing models, scattering, and geomechanics in a concise, but easily understandable way that makes the further ramifications and future directions clear. The broad scope and high quality of the contributions make this book highly attractive for graduates, postgraduates and researchers. All the contributing authors are leading international academics, scientists, researchers and scholars.

Advances in Mathematical Inequalities and Applications

Advances in Mathematical Inequalities and Applications PDF Author: Praveen Agarwal
Publisher: Springer
ISBN: 9811330131
Category : Mathematics
Languages : en
Pages : 351

Get Book Here

Book Description
This book is a collection of original research and survey articles on mathematical inequalities and their numerous applications in diverse areas of mathematics and engineering. It includes chapters on convexity and related concepts; inequalities for mean values, sums, functions, operators, functionals, integrals and their applications in various branches of mathematics and related sciences; fractional integral inequalities; and weighted type integral inequalities. It also presents their wide applications in biomathematics, boundary value problems, mechanics, queuing models, scattering, and geomechanics in a concise, but easily understandable way that makes the further ramifications and future directions clear. The broad scope and high quality of the contributions make this book highly attractive for graduates, postgraduates and researchers. All the contributing authors are leading international academics, scientists, researchers and scholars.

Advances in Mathematical Inequalities

Advances in Mathematical Inequalities PDF Author: Shigeru Furuichi
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110643642
Category : Mathematics
Languages : en
Pages : 347

Get Book Here

Book Description
Mathematical inequalities are essential tools in mathematics, natural science and engineering. This book gives an overview on recent advances. Some generalizations and improvements for the classical and well-known inequalities are described. They will be applied and further developed in many fields. Applications of the inequalities to entropy theory and quantum physics are also included.

Recent Advances in Geometric Inequalities

Recent Advances in Geometric Inequalities PDF Author: Dragoslav S. Mitrinovic
Publisher: Springer Science & Business Media
ISBN: 9401578427
Category : Mathematics
Languages : en
Pages : 728

Get Book Here

Book Description


Advances in Mathematical Inequalities

Advances in Mathematical Inequalities PDF Author: Shigeru Furuichi
Publisher:
ISBN: 9783110643435
Category :
Languages : en
Pages : 230

Get Book Here

Book Description
Mathematical inequalities are essential tools in mathematics, natural science and engineering. This book gives an overview on recent advances. Some generalizations and improvements for the classical and well-known inequalities are described which will are applied and further developed in many fields. Applications of the inequalities to entropy theory and quantum physics are also included.

Advances in Matrix Inequalities

Advances in Matrix Inequalities PDF Author: Mohammad Bagher Ghaemi
Publisher: Springer Nature
ISBN: 3030760472
Category : Mathematics
Languages : en
Pages : 287

Get Book Here

Book Description
This self-contained monograph unifies theorems, applications and problem solving techniques of matrix inequalities. In addition to the frequent use of methods from Functional Analysis, Operator Theory, Global Analysis, Linear Algebra, Approximations Theory, Difference and Functional Equations and more, the reader will also appreciate techniques of classical analysis and algebraic arguments, as well as combinatorial methods. Subjects such as operator Young inequalities, operator inequalities for positive linear maps, operator inequalities involving operator monotone functions, norm inequalities, inequalities for sector matrices are investigated thoroughly throughout this book which provides an account of a broad collection of classic and recent developments. Detailed proofs for all the main theorems and relevant technical lemmas are presented, therefore interested graduate and advanced undergraduate students will find the book particularly accessible. In addition to several areas of theoretical mathematics, Matrix Analysis is applicable to a broad spectrum of disciplines including operations research, mathematical physics, statistics, economics, and engineering disciplines. It is hoped that graduate students as well as researchers in mathematics, engineering, physics, economics and other interdisciplinary areas will find the combination of current and classical results and operator inequalities presented within this monograph particularly useful.

Projected Dynamical Systems and Variational Inequalities with Applications

Projected Dynamical Systems and Variational Inequalities with Applications PDF Author: Anna Nagurney
Publisher: Springer Science & Business Media
ISBN: 146152301X
Category : Business & Economics
Languages : en
Pages : 312

Get Book Here

Book Description
Equilibrium is a concept used in operations research and economics to understand the interplay of factors and problems arising from competitive systems in the economic world. The problems in this area are large and complex and have involved a variety of mathematical methodologies. In this monograph, the authors have widened the scope of theoretical work with a new approach, `projected dynamical systems theory', to previous work in variational inequality theory. While most classical work in this area is static, the introduction to the theory of projected dynamical systems will allow many real-life dynamic situations and problems to be handled and modeled. This monograph includes: a new theoretical approach, `projected dynamical system', which allows the researcher to model real-life situations more accurately; new mathematical methods allowing researchers to combine other theoretical approaches with the projected dynamical systems approach; a framework in which research can adequately model natural, financial and human (real life) situations in competitive equilibrium problems; the computational and numerical methods for the implementation of the methods and theory discussed in the book; stability analysis, algorithms and computational procedures are offered for each set of applications.

Functional Equations, Inequalities and Applications

Functional Equations, Inequalities and Applications PDF Author: Themistocles M. Rassias
Publisher: Springer
ISBN: 9789401702263
Category : Mathematics
Languages : en
Pages : 224

Get Book Here

Book Description
Functional Equations, Inequalities and Applications provides an extensive study of several important equations and inequalities, useful in a number of problems in mathematical analysis. Subjects dealt with include the generalized Cauchy functional equation, the Ulam stability theory in the geometry of partial differential equations, stability of a quadratic functional equation in Banach modules, functional equations and mean value theorems, isometric mappings, functional inequalities of iterative type, related to a Cauchy functional equation, the median principle for inequalities and applications, Hadamard and Dragomir-Agarwal inequalities, the Euler formulae and convex functions and approximate algebra homomorphisms. Also included are applications to some problems of pure and applied mathematics. This book will be of particular interest to mathematicians and graduate students whose work involves functional equations, inequalities and applications.

Advances in Mathematical Analysis and its Applications

Advances in Mathematical Analysis and its Applications PDF Author: Bipan Hazarika
Publisher: CRC Press
ISBN: 1000824438
Category : Mathematics
Languages : en
Pages : 338

Get Book Here

Book Description
Advances in Mathematical Analysis and its Applications is designed as a reference text and explores several important aspects of recent developments in the interdisciplinary applications of mathematical analysis (MA), and highlights how MA is now being employed in many areas of scientific research. It discusses theory and problems in real and complex analysis, functional analysis, approximation theory, operator theory, analytic inequalities, the Radon transform, nonlinear analysis, and various applications of interdisciplinary research; some topics are also devoted to specific applications such as the three-body problem, finite element analysis in fluid mechanics, algorithms for difference of monotone operators, a vibrational approach to a financial problem, and more. Features: The book encompasses several contemporary topics in the field of mathematical analysis, their applications, and relevancies in other areas of research and study. It offers an understanding of research problems by presenting the necessary developments in reasonable details The book also discusses applications and uses of operator theory, fixed-point theory, inequalities, bi-univalent functions, functional equations, and scalar-objective programming, and presents various associated problems and ways to solve such problems Contains applications on wavelets analysis and COVID-19 to show that mathematical analysis has interdisciplinary as well as real life applications. The book is aimed primarily at advanced undergraduates and postgraduate students studying mathematical analysis and mathematics in general. Researchers will also find this book useful.

Fractional Differential Equations, Inclusions and Inequalities with Applications

Fractional Differential Equations, Inclusions and Inequalities with Applications PDF Author: Sotiris K. Ntouyas
Publisher: MDPI
ISBN: 3039432184
Category : Mathematics
Languages : en
Pages : 518

Get Book Here

Book Description
During the last decade, there has been an increased interest in fractional differential equations, inclusions, and inequalities, as they play a fundamental role in the modeling of numerous phenomena, in particular, in physics, biomathematics, blood flow phenomena, ecology, environmental issues, viscoelasticity, aerodynamics, electrodynamics of complex medium, electrical circuits, electron-analytical chemistry, control theory, etc. This book presents collective works published in the recent Special Issue (SI) entitled "Fractional Differential Equation, Inclusions and Inequalities with Applications" of the journal Mathematics. This Special Issue presents recent developments in the theory of fractional differential equations and inequalities. Topics include but are not limited to the existence and uniqueness results for boundary value problems for different types of fractional differential equations, a variety of fractional inequalities, impulsive fractional differential equations, and applications in sciences and engineering.

Advances in Mathematical Modeling, Optimization and Optimal Control

Advances in Mathematical Modeling, Optimization and Optimal Control PDF Author: Jean-Baptiste Hiriart-Urruty
Publisher: Springer
ISBN: 3319307851
Category : Mathematics
Languages : en
Pages : 205

Get Book Here

Book Description
This book contains extended, in-depth presentations of the plenary talks from the 16th French-German-Polish Conference on Optimization, held in Kraków, Poland in 2013. Each chapter in this book exhibits a comprehensive look at new theoretical and/or application-oriented results in mathematical modeling, optimization, and optimal control. Students and researchers involved in image processing, partial differential inclusions, shape optimization, or optimal control theory and its applications to medical and rehabilitation technology, will find this book valuable. The first chapter by Martin Burger provides an overview of recent developments related to Bregman distances, which is an important tool in inverse problems and image processing. The chapter by Piotr Kalita studies the operator version of a first order in time partial differential inclusion and its time discretization. In the chapter by Günter Leugering, Jan Sokołowski and Antoni Żochowski, nonsmooth shape optimization problems for variational inequalities are considered. The next chapter, by Katja Mombaur is devoted to applications of optimal control and inverse optimal control in the field of medical and rehabilitation technology, in particular in human movement analysis, therapy and improvement by means of medical devices. The final chapter, by Nikolai Osmolovskii and Helmut Maurer provides a survey on no-gap second order optimality conditions in the calculus of variations and optimal control, and a discussion of their further development.