Author: Usama M. Fayyad
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 638
Book Description
Eight sections of this book span fundamental issues of knowledge discovery, classification and clustering, trend and deviation analysis, dependency derivation, integrated discovery systems, augumented database systems and application case studies. The appendices provide a list of terms used in the literature of the field of data mining and knowledge discovery in databases, and a list of online resources for the KDD researcher.
Advances in Knowledge Discovery and Data Mining
Author: Usama M. Fayyad
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 638
Book Description
Eight sections of this book span fundamental issues of knowledge discovery, classification and clustering, trend and deviation analysis, dependency derivation, integrated discovery systems, augumented database systems and application case studies. The appendices provide a list of terms used in the literature of the field of data mining and knowledge discovery in databases, and a list of online resources for the KDD researcher.
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 638
Book Description
Eight sections of this book span fundamental issues of knowledge discovery, classification and clustering, trend and deviation analysis, dependency derivation, integrated discovery systems, augumented database systems and application case studies. The appendices provide a list of terms used in the literature of the field of data mining and knowledge discovery in databases, and a list of online resources for the KDD researcher.
Advances in Machine Learning and Data Mining for Astronomy
Author: Michael J. Way
Publisher: CRC Press
ISBN: 1439841748
Category : Computers
Languages : en
Pages : 720
Book Description
Advances in Machine Learning and Data Mining for Astronomy documents numerous successful collaborations among computer scientists, statisticians, and astronomers who illustrate the application of state-of-the-art machine learning and data mining techniques in astronomy. Due to the massive amount and complexity of data in most scientific disciplines
Publisher: CRC Press
ISBN: 1439841748
Category : Computers
Languages : en
Pages : 720
Book Description
Advances in Machine Learning and Data Mining for Astronomy documents numerous successful collaborations among computer scientists, statisticians, and astronomers who illustrate the application of state-of-the-art machine learning and data mining techniques in astronomy. Due to the massive amount and complexity of data in most scientific disciplines
Advanced Techniques in Knowledge Discovery and Data Mining
Author: Nikhil Pal
Publisher: Springer
ISBN: 9781852338671
Category : Computers
Languages : en
Pages : 256
Book Description
Clear and concise explanations to understand the learning paradigms. Chapters written by leading world experts.
Publisher: Springer
ISBN: 9781852338671
Category : Computers
Languages : en
Pages : 256
Book Description
Clear and concise explanations to understand the learning paradigms. Chapters written by leading world experts.
Trends and Applications in Knowledge Discovery and Data Mining
Author: Manish Gupta
Publisher: Springer Nature
ISBN: 3030750159
Category : Computers
Languages : en
Pages : 181
Book Description
This book constitutes the refereed proceedings of five workshops that were held in conjunction with the 25th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2021, in Delhi, India, in May 2021. The 17 revised full papers presented were carefully reviewed and selected from a total of 39 submissions.. The five workshops were as follows: Workshop on Smart and Precise Agriculture (WSPA 2021) PAKDD 2021 Workshop on Machine Learning for Measurement Informatics (MLMEIN 2021) The First Workshop and Shared Task on Scope Detection of the Peer Review Articles (SDPRA 2021) The First International Workshop on Data Assessment and Readiness for AI (DARAI 2021) The First International Workshop on Artificial Intelligence for Enterprise Process Transformation (AI4EPT 2021)
Publisher: Springer Nature
ISBN: 3030750159
Category : Computers
Languages : en
Pages : 181
Book Description
This book constitutes the refereed proceedings of five workshops that were held in conjunction with the 25th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2021, in Delhi, India, in May 2021. The 17 revised full papers presented were carefully reviewed and selected from a total of 39 submissions.. The five workshops were as follows: Workshop on Smart and Precise Agriculture (WSPA 2021) PAKDD 2021 Workshop on Machine Learning for Measurement Informatics (MLMEIN 2021) The First Workshop and Shared Task on Scope Detection of the Peer Review Articles (SDPRA 2021) The First International Workshop on Data Assessment and Readiness for AI (DARAI 2021) The First International Workshop on Artificial Intelligence for Enterprise Process Transformation (AI4EPT 2021)
Constrained Clustering
Author: Sugato Basu
Publisher: CRC Press
ISBN: 9781584889977
Category : Computers
Languages : en
Pages : 472
Book Description
Since the initial work on constrained clustering, there have been numerous advances in methods, applications, and our understanding of the theoretical properties of constraints and constrained clustering algorithms. Bringing these developments together, Constrained Clustering: Advances in Algorithms, Theory, and Applications presents an extensive collection of the latest innovations in clustering data analysis methods that use background knowledge encoded as constraints. Algorithms The first five chapters of this volume investigate advances in the use of instance-level, pairwise constraints for partitional and hierarchical clustering. The book then explores other types of constraints for clustering, including cluster size balancing, minimum cluster size,and cluster-level relational constraints. Theory It also describes variations of the traditional clustering under constraints problem as well as approximation algorithms with helpful performance guarantees. Applications The book ends by applying clustering with constraints to relational data, privacy-preserving data publishing, and video surveillance data. It discusses an interactive visual clustering approach, a distance metric learning approach, existential constraints, and automatically generated constraints. With contributions from industrial researchers and leading academic experts who pioneered the field, this volume delivers thorough coverage of the capabilities and limitations of constrained clustering methods as well as introduces new types of constraints and clustering algorithms.
Publisher: CRC Press
ISBN: 9781584889977
Category : Computers
Languages : en
Pages : 472
Book Description
Since the initial work on constrained clustering, there have been numerous advances in methods, applications, and our understanding of the theoretical properties of constraints and constrained clustering algorithms. Bringing these developments together, Constrained Clustering: Advances in Algorithms, Theory, and Applications presents an extensive collection of the latest innovations in clustering data analysis methods that use background knowledge encoded as constraints. Algorithms The first five chapters of this volume investigate advances in the use of instance-level, pairwise constraints for partitional and hierarchical clustering. The book then explores other types of constraints for clustering, including cluster size balancing, minimum cluster size,and cluster-level relational constraints. Theory It also describes variations of the traditional clustering under constraints problem as well as approximation algorithms with helpful performance guarantees. Applications The book ends by applying clustering with constraints to relational data, privacy-preserving data publishing, and video surveillance data. It discusses an interactive visual clustering approach, a distance metric learning approach, existential constraints, and automatically generated constraints. With contributions from industrial researchers and leading academic experts who pioneered the field, this volume delivers thorough coverage of the capabilities and limitations of constrained clustering methods as well as introduces new types of constraints and clustering algorithms.
Knowledge Discovery Practices and Emerging Applications of Data Mining: Trends and New Domains
Author: Kumar, A.V. Senthil
Publisher: IGI Global
ISBN: 160960069X
Category : Computers
Languages : en
Pages : 414
Book Description
Knowledge Discovery Practices and Emerging Applications of Data Mining: Trends and New Domains introduces the reader to recent research activities in the field of data mining. This book covers association mining, classification, mobile marketing, opinion mining, microarray data mining, internet mining and applications of data mining on biological data, telecommunication and distributed databases, among others, while promoting understanding and implementation of data mining techniques in emerging domains.
Publisher: IGI Global
ISBN: 160960069X
Category : Computers
Languages : en
Pages : 414
Book Description
Knowledge Discovery Practices and Emerging Applications of Data Mining: Trends and New Domains introduces the reader to recent research activities in the field of data mining. This book covers association mining, classification, mobile marketing, opinion mining, microarray data mining, internet mining and applications of data mining on biological data, telecommunication and distributed databases, among others, while promoting understanding and implementation of data mining techniques in emerging domains.
Optimization Based Data Mining: Theory and Applications
Author: Yong Shi
Publisher: Springer Science & Business Media
ISBN: 0857295047
Category : Computers
Languages : en
Pages : 314
Book Description
Optimization techniques have been widely adopted to implement various data mining algorithms. In addition to well-known Support Vector Machines (SVMs) (which are based on quadratic programming), different versions of Multiple Criteria Programming (MCP) have been extensively used in data separations. Since optimization based data mining methods differ from statistics, decision tree induction, and neural networks, their theoretical inspiration has attracted many researchers who are interested in algorithm development of data mining. Optimization based Data Mining: Theory and Applications, mainly focuses on MCP and SVM especially their recent theoretical progress and real-life applications in various fields. These include finance, web services, bio-informatics and petroleum engineering, which has triggered the interest of practitioners who look for new methods to improve the results of data mining for knowledge discovery. Most of the material in this book is directly from the research and application activities that the authors’ research group has conducted over the last ten years. Aimed at practitioners and graduates who have a fundamental knowledge in data mining, it demonstrates the basic concepts and foundations on how to use optimization techniques to deal with data mining problems.
Publisher: Springer Science & Business Media
ISBN: 0857295047
Category : Computers
Languages : en
Pages : 314
Book Description
Optimization techniques have been widely adopted to implement various data mining algorithms. In addition to well-known Support Vector Machines (SVMs) (which are based on quadratic programming), different versions of Multiple Criteria Programming (MCP) have been extensively used in data separations. Since optimization based data mining methods differ from statistics, decision tree induction, and neural networks, their theoretical inspiration has attracted many researchers who are interested in algorithm development of data mining. Optimization based Data Mining: Theory and Applications, mainly focuses on MCP and SVM especially their recent theoretical progress and real-life applications in various fields. These include finance, web services, bio-informatics and petroleum engineering, which has triggered the interest of practitioners who look for new methods to improve the results of data mining for knowledge discovery. Most of the material in this book is directly from the research and application activities that the authors’ research group has conducted over the last ten years. Aimed at practitioners and graduates who have a fundamental knowledge in data mining, it demonstrates the basic concepts and foundations on how to use optimization techniques to deal with data mining problems.
Data Mining and Knowledge Discovery via Logic-Based Methods
Author: Evangelos Triantaphyllou
Publisher: Springer Science & Business Media
ISBN: 144191630X
Category : Computers
Languages : en
Pages : 371
Book Description
The importance of having ef cient and effective methods for data mining and kn- ledge discovery (DM&KD), to which the present book is devoted, grows every day and numerous such methods have been developed in recent decades. There exists a great variety of different settings for the main problem studied by data mining and knowledge discovery, and it seems that a very popular one is formulated in terms of binary attributes. In this setting, states of nature of the application area under consideration are described by Boolean vectors de ned on some attributes. That is, by data points de ned in the Boolean space of the attributes. It is postulated that there exists a partition of this space into two classes, which should be inferred as patterns on the attributes when only several data points are known, the so-called positive and negative training examples. The main problem in DM&KD is de ned as nding rules for recognizing (cl- sifying) new data points of unknown class, i. e. , deciding which of them are positive and which are negative. In other words, to infer the binary value of one more attribute, called the goal or class attribute. To solve this problem, some methods have been suggested which construct a Boolean function separating the two given sets of positive and negative training data points.
Publisher: Springer Science & Business Media
ISBN: 144191630X
Category : Computers
Languages : en
Pages : 371
Book Description
The importance of having ef cient and effective methods for data mining and kn- ledge discovery (DM&KD), to which the present book is devoted, grows every day and numerous such methods have been developed in recent decades. There exists a great variety of different settings for the main problem studied by data mining and knowledge discovery, and it seems that a very popular one is formulated in terms of binary attributes. In this setting, states of nature of the application area under consideration are described by Boolean vectors de ned on some attributes. That is, by data points de ned in the Boolean space of the attributes. It is postulated that there exists a partition of this space into two classes, which should be inferred as patterns on the attributes when only several data points are known, the so-called positive and negative training examples. The main problem in DM&KD is de ned as nding rules for recognizing (cl- sifying) new data points of unknown class, i. e. , deciding which of them are positive and which are negative. In other words, to infer the binary value of one more attribute, called the goal or class attribute. To solve this problem, some methods have been suggested which construct a Boolean function separating the two given sets of positive and negative training data points.
Advances in Data Mining Knowledge Discovery and Applications
Author: Adem Karahoca
Publisher: BoD – Books on Demand
ISBN: 9535107488
Category : Computers
Languages : en
Pages : 404
Book Description
Advances in Data Mining Knowledge Discovery and Applications aims to help data miners, researchers, scholars, and PhD students who wish to apply data mining techniques. The primary contribution of this book is highlighting frontier fields and implementations of the knowledge discovery and data mining. It seems to be same things are repeated again. But in general, same approach and techniques may help us in different fields and expertise areas. This book presents knowledge discovery and data mining applications in two different sections. As known that, data mining covers areas of statistics, machine learning, data management and databases, pattern recognition, artificial intelligence, and other areas. In this book, most of the areas are covered with different data mining applications. The eighteen chapters have been classified in two parts: Knowledge Discovery and Data Mining Applications.
Publisher: BoD – Books on Demand
ISBN: 9535107488
Category : Computers
Languages : en
Pages : 404
Book Description
Advances in Data Mining Knowledge Discovery and Applications aims to help data miners, researchers, scholars, and PhD students who wish to apply data mining techniques. The primary contribution of this book is highlighting frontier fields and implementations of the knowledge discovery and data mining. It seems to be same things are repeated again. But in general, same approach and techniques may help us in different fields and expertise areas. This book presents knowledge discovery and data mining applications in two different sections. As known that, data mining covers areas of statistics, machine learning, data management and databases, pattern recognition, artificial intelligence, and other areas. In this book, most of the areas are covered with different data mining applications. The eighteen chapters have been classified in two parts: Knowledge Discovery and Data Mining Applications.
Advanced Data Mining and Applications
Author: Xue Li
Publisher: Springer Science & Business Media
ISBN: 354027894X
Category : Business & Economics
Languages : en
Pages : 852
Book Description
This book constitutes the refereed proceedings of the First International Conference on Advanced Data Mining and Applications, ADMA 2005, held in Wuhan, China in July 2005. The conference was focused on sophisticated techniques and tools that can handle new fields of data mining, e.g. spatial data mining, biomedical data mining, and mining on high-speed and time-variant data streams; an expansion of data mining to new applications is also strived for. The 25 revised full papers and 75 revised short papers presented were carefully peer-reviewed and selected from over 600 submissions. The papers are organized in topical sections on association rules, classification, clustering, novel algorithms, text mining, multimedia mining, sequential data mining and time series mining, web mining, biomedical mining, advanced applications, security and privacy issues, spatial data mining, and streaming data mining.
Publisher: Springer Science & Business Media
ISBN: 354027894X
Category : Business & Economics
Languages : en
Pages : 852
Book Description
This book constitutes the refereed proceedings of the First International Conference on Advanced Data Mining and Applications, ADMA 2005, held in Wuhan, China in July 2005. The conference was focused on sophisticated techniques and tools that can handle new fields of data mining, e.g. spatial data mining, biomedical data mining, and mining on high-speed and time-variant data streams; an expansion of data mining to new applications is also strived for. The 25 revised full papers and 75 revised short papers presented were carefully peer-reviewed and selected from over 600 submissions. The papers are organized in topical sections on association rules, classification, clustering, novel algorithms, text mining, multimedia mining, sequential data mining and time series mining, web mining, biomedical mining, advanced applications, security and privacy issues, spatial data mining, and streaming data mining.