Advancement of Biobased Products Through Design, Synthesis and Engineering of Biopolyesters

Advancement of Biobased Products Through Design, Synthesis and Engineering of Biopolyesters PDF Author: Chisa Kandyda Brookes
Publisher:
ISBN:
Category : Biodegradable products
Languages : en
Pages : 306

Get Book Here

Book Description

Advancement of Biobased Products Through Design, Synthesis and Engineering of Biopolyesters

Advancement of Biobased Products Through Design, Synthesis and Engineering of Biopolyesters PDF Author: Chisa Kandyda Brookes
Publisher:
ISBN:
Category : Biodegradable products
Languages : en
Pages : 306

Get Book Here

Book Description


Polyesters and Polyamides

Polyesters and Polyamides PDF Author: B L Deopura
Publisher: Elsevier
ISBN: 1845694600
Category : Technology & Engineering
Languages : en
Pages : 631

Get Book Here

Book Description
Polyesters and polyamides remain the most used group of synthetic fibres. This authoritative book reviews methods of their production, ways of improving their functionality and their wide range of applications.The first part of the book describes raw materials and manufacturing processes, including environmental issues. Part two considers ways of improving the functionality of polyester and polyamide fibres, including blending, weaving, coloration and other finishing techniques as well as new techniques such as nanotechnology. The final part of the book reviews the range of uses of these important fibres, from apparel and sportswear to automotive, medical and civil engineering applications.With its distinguished editors and international team of contributors, Polyesters and polyamides is a standard reference for all those using this important group of fibres. - Reviews the chemical and physical properties of each fibre and their manufacture - Analyses how the functionality of polyester and polyamides can be improved - Provides examples of how the fibres are used in applications

Biopolyesters

Biopolyesters PDF Author: Wolfgang Babel
Publisher: Springer
ISBN: 3540400214
Category : Technology & Engineering
Languages : en
Pages : 345

Get Book Here

Book Description
Living systems synthesize seven different classes of polymers. They provide structure and form for cells and organisms, function as catalysts and energy storage and carry the genetic information. All these polymers possess technically interesting properties. Some of these biopolymers are already used commercially. This special volume of Advances in Biochemical Engineering/Biotechnology comprises 10 chapters. It gives an overview of the water insoluble biopolyesters, in particular of the microbially synthesized poly-hydroxyalkanoate (PHA) family. It reports the state of the art of metabolism, regulation and genetic background, the latest advances made in genetic optimization of bacteria, "construction" of transgenic plants and in vitro synthesis by means of purified enzymes. Furthermore, it describes relevant technologies and evaluates perspectives concerning increasing the economic viability and competitiveness of PHA and discusses applications in medicine, packaging, food and other fields.

Bio-Based Packaging

Bio-Based Packaging PDF Author: Salit Mohd Sapuan
Publisher: John Wiley & Sons
ISBN: 111938107X
Category : Science
Languages : en
Pages : 548

Get Book Here

Book Description
Bio-Based Packaging Bio-Based Packaging An authoritative and up-to-date review of sustainable packaging development and applications Bio-Based Packaging explores using renewable and biodegradable materials as sustainable alternatives to non-renewable, petroleum-based packaging. This comprehensive volume surveys the properties of biopolymers, the environmental and economic impact of bio-based packaging, and new and emerging technologies that are increasing the number of potential applications of green materials in the packaging industry. Contributions address the advantages and challenges of bio-based packaging, discuss new materials to be used for food packaging, and highlight cutting-edge research on polymers such as starch, protein, polylactic acid (PLA), pectin, nanocellulose, and their nanocomposites. In-depth yet accessible chapters provide balanced coverage of a broad range of practical topics, including life cycle assessment (LCA) of bio-based packaging products, consumer perceptions and preferences, supply chains, business strategies and markets in biodegradable food packaging, manufacturing of bio-based packaging materials, and regulations for food packaging materials. Detailed discussions provide valuable insight into the opportunities for biopolymers in end-use sectors, the barriers to biopolymer-based concepts in the packaging market, recent advances made in the field of biopolymeric composite materials, the future of bio-plastics in commercial food packaging, and more. This book: Provides deep coverage of the bio-based packaging development, characterization, regulations and environmental and socio-economic impact Contains real-world case studies of bio-based packaging applications Includes an overview of recent advances and emerging aspects of nanotechnology for development of sustainable composites for packaging Discusses renewable sources for packaging material and the reuse and recycling of bio-based packaging products Bio-Based Packaging is essential reading for academics, researchers, and industry professionals working in packaging materials, renewable resources, sustainability, polymerization technology, food technology, material engineering, and related fields. For more information on the Wiley Series in Renewable Resources, visit www.wiley.com/go/rrs

Enzymatic Polymerizations

Enzymatic Polymerizations PDF Author:
Publisher: Academic Press
ISBN: 0128170964
Category : Science
Languages : en
Pages : 382

Get Book Here

Book Description
Enzymatic Polymerizations, Volume 627 in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Methods in Enzymology series - Includes the latest information on Enzymatic Polymerizations

Sustainable Food Packaging Technology

Sustainable Food Packaging Technology PDF Author: Athanassia Athanassiou
Publisher: John Wiley & Sons
ISBN: 3527345566
Category : Technology & Engineering
Languages : en
Pages : 464

Get Book Here

Book Description
Towards more sustainable packaging with biodegradable materials! The combination of the continuously increasing food packaging waste with the non-biodegradable nature of the plastic materials that have a big slice of the packaging market makes it necessary to move towards sustainable packaging for the benefit of the environment and human health. Sustainable packaging is the type of packaging that can provide to food the necessary protection conditions, but at the same type is biodegradable and can be disposed as organic waste to the landfills in order to biodegrade through a natural procedure. In this way, sustainable packaging becomes part of the circular economy. ?Sustainable Food Packaging Technology? deals with packaging solutions that use engineered biopolymers or biocomposites that have suitable physicochemical properties for food contact and protection and originate both from renewable or non-renewable resources, but in both cases are compostable or edible. Modified paper and cardboard with increased protective properties towards food while keeping their compostability are presented as well. The book also covers natural components that can make the packaging functional, e.g., by providing active protection to the food indicating food spoilage. * Addresses urgent problems: food packaging creates a lot of hard-to-recycle waste - this book puts forward more sustainable solutions using biodegradable materials * State-of-the-art: ?Sustainable Food Packaging Technology? provides knowledge on new developments in functional packaging * From lab to large-scale applications: expert authors report on the technology aspects of sustainable packaging

Poly(lactic acid)

Poly(lactic acid) PDF Author: Rafael A. Auras
Publisher: Wiley
ISBN: 9780470293669
Category : Technology & Engineering
Languages : en
Pages : 528

Get Book Here

Book Description
This book describes the synthesis, properties, and processing methods of poly(lactic acid) (PLA), an important family of degradable plastics. As the need for environmentally-friendly packaging materials increases, consumers and companies are in search for new materials that are largely produced from renewable resources, and are recyclable. To that end, an overall theme of the book is the biodegradability, recycling, and sustainability benefits of PLA. The chapters, from a base of international expert contributors, describe specific processing methods, spectroscopy techniques for PLA analysis, and and applications in medical items, packaging, and environmental use.

Bio-Based Plastics

Bio-Based Plastics PDF Author: Stephan Kabasci
Publisher: John Wiley & Sons
ISBN: 1118676734
Category : Technology & Engineering
Languages : en
Pages : 396

Get Book Here

Book Description
The field of bio-based plastics has developed significantly in the last 10 years and there is increasing pressure on industries to shift existing materials production from petrochemicals to renewables. Bio-based Plastics presents an up-to-date overview of the basic and applied aspects of bioplastics, focusing primarily on thermoplastic polymers for material use. Emphasizing materials currently in use or with significant potential for future applications, this book looks at the most important biopolymer classes such as polysaccharides, lignin, proteins and polyhydroxyalkanoates as raw materials for bio-based plastics, as well as materials derived from bio-based monomers like lipids, poly(lactic acid), polyesters, polyamides and polyolefines. Detailed consideration is also given to the market and availability of renewable raw materials, the importance of bio-based content and the aspect of biodegradability. Topics covered include: Starch Cellulose and cellulose acetate Materials based on chitin and chitosan Lignin matrix composites from natural resources Polyhydroxyalkanoates Poly(lactic acid) Polyesters, Polyamides and Polyolefins from biomass derived monomers Protein-based plastics Bio-based Plastics is a valuable resource for academic and industrial researchers who are interested in new materials, renewable resources, sustainability and polymerization technology. It will also prove useful for advanced students interested in the development of bio-based products and materials, green and sustainable chemistry, polymer chemistry and materials science. For more information on the Wiley Series in Renewable Resources, visit www.wiley.com/go/rrs

Processing Technology for Bio-Based Polymers

Processing Technology for Bio-Based Polymers PDF Author: Khalid Mahmood Zia
Publisher: Elsevier
ISBN: 0323858198
Category : Technology & Engineering
Languages : en
Pages : 306

Get Book Here

Book Description
Processing Technology for Bio-Based Polymers: Advanced Strategies and Practical Aspects brings together the latest advances and novel technologies surrounding the synthesis and manufacture of biopolymers, ranging from bio-based polymers to synthetic polymers from bio-derived monomers. Sections examine bio-based polymer chemistry, discuss polymerization process and emerging design technologies, cover manufacturing and processing approaches, explain cutting-edge approaches and innovative applications, and focus on biomedicals and other key application areas. Final chapters provide detailed discussion and an analysis of economic and environmental concerns, practical considerations, challenges, opportunities and future trends. This is a valuable resource for researchers, scientists and advanced students in polymer science, bio-based materials, nanomaterials, plastics engineering, biomaterials, chemistry, biotechnology, and materials science and engineering, as well as R&D professionals, engineers and industrialists interested in the development of biopolymers for advanced products and applications. - Focuses on the processing of bio-based polymers, covering both traditional methods and innovative new approaches - Offers novel opportunities and ideas for developing or improving technologies for biopolymer research, preparation and application - Examines other key considerations, including reliability and end product, economic concerns, and environmental and lifecycle aspects

Current Advances in Biopolymer Processing and Characterization

Current Advances in Biopolymer Processing and Characterization PDF Author: Martin Koller
Publisher:
ISBN: 9781536127102
Category : Biopolymers
Languages : en
Pages : 0

Get Book Here

Book Description
The book presents current R&D activities to unravel the physico-chemical properties of diverse biopolymers, and their processing towards functionalised, high-performance bio-products with defined applications. The importance of this research becomes obvious by considering the annual plastic production of about 330 Mt, the lion's share thereof based on the conversion of fossil feedstocks that is highly recalcitrant against biodegradation. Alternative environmentally degradable plastics cover not even 5% of today's plastic market. Such biopolymers encompass various macromolecules of biological origin with diverse monomeric composition, and manifold physico-chemical properties. This structural diversity makes them potential candidates to produce bulk materials, e.g., for packaging purposes, smart functionalised materials in special niches like the biomedical field. Consequently, we witness an increasing trend towards new natural polymers to replace well-established products like plastics. After decades of global R&D developments in this field, and numerous body blows on the way to the anticipated market breakthrough of biopolymers, it is generally recognised that the success of such new materials needs progress in both material performance and production prices. The book Current Advances in Biopolymer Processing & Characterisation is dedicated to the current state-of-the-art of production, modification, characterisation, and processing of two major biopolymer groups: Firstly, polysaccharides, nature's most abundant raw materials, are represented by specialised contributions on biomedical applications of starch and its follow-up products. Polysaccharides were also studied for the examples of functionalised thermoplastic starch, molecular and hydrocolloidal characteristics of xanthan in aqueous environments, and by the design of functionalised xylan-based bio-materials. Secondly, the second series of contributions encompasses diverse biopolyesters. Advanced methods to improve the properties of PLA, fine-tune PLA properties by triggering PLA's crystallisation rate during melt processing, and the strongly emerging field of 3D-printing of PLA, PCL, and microbial PHA are described. Finally, the authors familiarise the reader with the application of mixed microbial cultures to produce PHA heteropolyesters with different thermo-mechanical properties in dependence on cultivation strategy and the microbial species composition. This compilation of new biomaterials with surprising functions and performance, based on these natural polymers will address scientists active in biopolymers production, functionalisation, characterisation, and processing towards bio-technomers. The book is also dedicated to undergraduate students of polymer chemistry and polymer processing, and to representatives of the polymer industry who are interested in developing innovative, sustainable and smart polymeric products. Activities motivated by reading this book shall boost the impatiently desired market penetration of biopolymers and their follow-up products. Such materials definitely display a socioeconomic impact by addressing prevailing ecological concerns such as depleting fossil resources, growing piles of plastic waste, and increasing global warming. The contributions to this book illustrate that bio-inspired remedies for prevalent ecological problems are already available, developed by experts in polymer sciences and engineering, or that these solutions are at least in the status of development.