Advanced Two-Dimensional Material-Based Heterostructures in Sustainable Energy Storage Devices

Advanced Two-Dimensional Material-Based Heterostructures in Sustainable Energy Storage Devices PDF Author: Srikanth Ponnada
Publisher: CRC Press
ISBN: 1040103618
Category : Technology & Engineering
Languages : en
Pages : 221

Get Book Here

Book Description
Advanced Two-Dimensional Material-Based Heterostructures in Sustainable Energy Storage Devices provides a detailed overview of advances and challenges in the development of 2D materials for use in energy storage devices. It offers deep insight into the synthesis, characterization, and application of different 2D materials and their heterostructures in a variety of energy storage devices, focusing on new phenomena and enhanced electrochemistry. This book: Introduces 2D materials, synthesis methods, and characterization techniques Discusses application in a wide range of batteries and supercapacitors Offers perspectives on future investigations necessary to overcome existing challenges This comprehensive reference is written to guide researchers and engineers working to advance the technology of energy-efficient energy storage devices.

Advanced Two-Dimensional Material-Based Heterostructures in Sustainable Energy Storage Devices

Advanced Two-Dimensional Material-Based Heterostructures in Sustainable Energy Storage Devices PDF Author: Srikanth Ponnada
Publisher: CRC Press
ISBN: 1040103618
Category : Technology & Engineering
Languages : en
Pages : 221

Get Book Here

Book Description
Advanced Two-Dimensional Material-Based Heterostructures in Sustainable Energy Storage Devices provides a detailed overview of advances and challenges in the development of 2D materials for use in energy storage devices. It offers deep insight into the synthesis, characterization, and application of different 2D materials and their heterostructures in a variety of energy storage devices, focusing on new phenomena and enhanced electrochemistry. This book: Introduces 2D materials, synthesis methods, and characterization techniques Discusses application in a wide range of batteries and supercapacitors Offers perspectives on future investigations necessary to overcome existing challenges This comprehensive reference is written to guide researchers and engineers working to advance the technology of energy-efficient energy storage devices.

2D Materials for Energy Storage and Conversion

2D Materials for Energy Storage and Conversion PDF Author: Suresh C. Pillai
Publisher:
ISBN: 9780750333184
Category : Energy storage
Languages : en
Pages : 0

Get Book Here

Book Description
This reference text provides a comprehensive overview of the latest developments in 2D materials for energy storage and conversion. It covers a wide range of 2D materials and energy applications, including 2D heterostructures for hydrogen storage applications, cathode and anode materials for lithium and sodium-ion batteries, ultrafast lithium and sodium-ion batteries, MXenes for improved electrochemical applications and MXenes as solid-state asymmetric supercapacitors.

2D Metal Carbides and Nitrides (MXenes)

2D Metal Carbides and Nitrides (MXenes) PDF Author: Babak Anasori
Publisher: Springer Nature
ISBN: 3030190269
Category : Technology & Engineering
Languages : en
Pages : 530

Get Book Here

Book Description
This book describes the rapidly expanding field of two-dimensional (2D) transition metal carbides and nitrides (MXenes). It covers fundamental knowledge on synthesis, structure, and properties of these new materials, and a description of their processing, scale-up and emerging applications. The ways in which the quickly expanding family of MXenes can outperform other novel nanomaterials in a variety of applications, spanning from energy storage and conversion to electronics; from water science to transportation; and in defense and medical applications, are discussed in detail.

Machine Learning in 2D Materials Science

Machine Learning in 2D Materials Science PDF Author: Parvathi Chundi
Publisher: CRC Press
ISBN: 1000987434
Category : Technology & Engineering
Languages : en
Pages : 249

Get Book Here

Book Description
Data science and machine learning (ML) methods are increasingly being used to transform the way research is being conducted in materials science to enable new discoveries and design new materials. For any materials science researcher or student, it may be daunting to figure out if ML techniques are useful for them or, if so, which ones are applicable in their individual contexts, and how to study the effectiveness of these methods systematically. KEY FEATURES • Provides broad coverage of data science and ML fundamentals to materials science researchers so that they can confidently leverage these techniques in their research projects. • Offers introductory material in topics such as ML, data integration, and 2D materials. • Provides in-depth coverage of current ML methods for validating 2D materials using both experimental and simulation data, researching and discovering new 2D materials, and enhancing ML methods with physical properties of materials. • Discusses customized ML methods for 2D materials data and applications and high-throughput data acquisition. • Describes several case studies illustrating how ML approaches are currently leading innovations in the discovery, development, manufacturing, and deployment of 2D materials needed for strengthening industrial products. • Gives future trends in ML for 2D materials, explainable AI, and dealing with extremely large and small, diverse datasets. Aimed at materials science researchers, this book allows readers to quickly, yet thoroughly, learn the ML and AI concepts needed to ascertain the applicability of ML methods in their research.

Energy Applications of 2D Nanomaterials

Energy Applications of 2D Nanomaterials PDF Author: Ram K. Gupta
Publisher: CRC Press
ISBN: 1000586103
Category : Science
Languages : en
Pages : 395

Get Book Here

Book Description
2D nanomaterials have emerged as promising candidates for use in energy devices owing to their superior electrochemical properties, surface area, nanodevice integration, multifunctionality, printability, and mechanical flexibility. Energy Applications of 2D Nanomaterials covers a wide range of applications of 2D nanomaterials for energy, as well as future applications and challenges in fabricating flexible energy generation and storage devices. This book: Examines 2D nanomaterials for solar cells, fuel cells, batteries, supercapacitors, and flexible devices Details novel methods and advanced technologies Covers future applications and challenges This book is aimed at materials scientists, chemists, electrochemists, and engineers working in energy disciplines.

Electrode Materials for Energy Storage and Conversion

Electrode Materials for Energy Storage and Conversion PDF Author: Mesfin A. Kebede
Publisher: CRC Press
ISBN: 1000457869
Category : Science
Languages : en
Pages : 518

Get Book Here

Book Description
This book provides a comprehensive overview of the latest developments and materials used in electrochemical energy storage and conversion devices, including lithium-ion batteries, sodium-ion batteries, zinc-ion batteries, supercapacitors and conversion materials for solar and fuel cells. Chapters introduce the technologies behind each material, in addition to the fundamental principles of the devices, and their wider impact and contribution to the field. This book will be an ideal reference for researchers and individuals working in industries based on energy storage and conversion technologies across physics, chemistry and engineering. FEATURES Edited by established authorities, with chapter contributions from subject-area specialists Provides a comprehensive review of the field Up to date with the latest developments and research Editors Dr. Mesfin A. Kebede obtained his PhD in Metallurgical Engineering from Inha University, South Korea. He is now a principal research scientist at Energy Centre of Council for Scientific and Industrial Research (CSIR), South Africa. He was previously an assistant professor in the Department of Applied Physics and Materials Science at Hawassa University, Ethiopia. His extensive research experience covers the use of electrode materials for energy storage and energy conversion. Prof. Fabian I. Ezema is a professor at the University of Nigeria, Nsukka. He obtained his PhD in Physics and Astronomy from University of Nigeria, Nsukka. His research focuses on several areas of materials science with an emphasis on energy applications, specifically electrode materials for energy conversion and storage.

Flexible Supercapacitor Nanoarchitectonics

Flexible Supercapacitor Nanoarchitectonics PDF Author: Inamuddin
Publisher: John Wiley & Sons
ISBN: 1119711452
Category : Technology & Engineering
Languages : en
Pages : 674

Get Book Here

Book Description
The 21 chapters in this book presents a comprehensive overview of flexible supercapacitors using engineering nanoarchitectures mediated by functional nanomaterials and polymers as electrodes, electrolytes, and separators, etc. for advanced energy applications. The various aspects of flexible supercapacitors, including capacitor electrochemistry, evaluating parameters, operating conditions, characterization techniques, different types of electrodes, electrolytes, and flexible substrates are covered. This is probably the first book of its type which systematically describes the recent developments and progress in flexible supercapacitor technology, and will be very helpful for generating new and innovative ideas in the field of energy storage material for wearable/flexible industry applications.

Van der Waals Heterostructures

Van der Waals Heterostructures PDF Author: Zhuo Kang
Publisher: John Wiley & Sons
ISBN: 3527833870
Category : Technology & Engineering
Languages : en
Pages : 340

Get Book Here

Book Description
Van der Waals Heterostructures A comprehensive resource systematically detailing the developments and applications of van der Waals heterostructures and devices Van der Waals Heterostructures is essential reading to understand the developments made in van der Waals heterostructures and devices in all aspects, from basic synthesis to physical analysis and heterostructures assembling to devices applications, including demonstrated applications of van der Waals heterostructure on electronics, optoelectronics, and energy conversion, such as solar energy, hydrogen energy, batteries, catalysts, biotechnology, and more. This book starts from an in-depth introduction of van der Waals interactions in layered materials and the forming of mixed-dimensional heterostructures via van der Waals force. It then comprehensively summarizes the synthetic methods, devices building processes and physical mechanism of 2D van der Waals heterostructures, and devices including 2D-2D electronics, 2D-2D optoelectronics, and mixed dimensional van der Waals heterostructures. In Van der Waals Heterostructures, readers can expect to find specific information on: The current library of 2D semiconductors and the current synthesis and performances of 2D semiconductors Controllable synthesis and assemble van der Waals heterostructures, physics of the van der Waals interface, and multi-field coupling effects 2D-2D electronics, 2D-2D optoelectronics, mixed dimensional van der Waals heterostructures, and van der Waals heterostructure applications on energy conversion Insight into future perspectives of the van der Waals heterostructures and devices with the detailed effective role of 2D materials for integrated electrical and electronic equipment

Two-Dimensional Nanostructures

Two-Dimensional Nanostructures PDF Author: Mahmood Aliofkhazraei
Publisher: CRC Press
ISBN: 1439866651
Category : Technology & Engineering
Languages : en
Pages : 325

Get Book Here

Book Description
After the 2010 Nobel Prize in Physics was awarded to Andre Geim and Konstantin Novoselov "for groundbreaking experiments regarding the two-dimensional material graphene," even more research and development efforts have been focused on two-dimensional nanostructures. Illustrating the importance of this area in future applications, Two-Dimensional Nanostructures covers the fabrication methods and properties of these materials. The authors begin with discussions on the properties, size effect, applications, classification groups, and growth of nanostructures. They then describe various characterization and fabrication methods, such as spectrometry, low-energy electron diffraction, physical and chemical vapor deposition, and molecular beam epitaxy. The remainder of the text focuses on mechanical, chemical, and physical properties and fabrication methods, including a new mechanical method for fabricating graphene layers and a model for relating the features and structures of nanostructured thin films. With companies already demonstrating the capabilities of graphene in a flexible touch-screen and a 150 GHz transistor, nanostructures are on their way to replacing silicon as the materials of choice in electronics and other areas. This book aids you in understanding the current chemical, mechanical, and physical processes for producing these "miracle materials."

Defects in Two-Dimensional Materials

Defects in Two-Dimensional Materials PDF Author: Rafik Addou
Publisher: Elsevier
ISBN: 032390310X
Category : Technology & Engineering
Languages : en
Pages : 434

Get Book Here

Book Description
Defects in Two-Dimensional Materials addresses the fundamental physics and chemistry of defects in 2D materials and their effects on physical, electrical and optical properties. The book explores 2D materials such as graphene, hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMD). This knowledge will enable scientists and engineers to tune 2D materials properties to meet specific application requirements. The book reviews the techniques to characterize 2D material defects and compares the defects present in the various 2D materials (e.g. graphene, h-BN, TMDs, phosphorene, silicene, etc.). As two-dimensional materials research and development is a fast-growing field that could lead to many industrial applications, the primary objective of this book is to review, discuss and present opportunities in controlling defects in these materials to improve device performance in general or use the defects in a controlled way for novel applications. Presents the theory, physics and chemistry of 2D materials Catalogues defects of 2D materials and their impacts on materials properties and performance Reviews methods to characterize, control and engineer defects in 2D materials