Author: C. H. Edwards
Publisher: Academic Press
ISBN: 1483268055
Category : Mathematics
Languages : en
Pages : 470
Book Description
Advanced Calculus of Several Variables provides a conceptual treatment of multivariable calculus. This book emphasizes the interplay of geometry, analysis through linear algebra, and approximation of nonlinear mappings by linear ones. The classical applications and computational methods that are responsible for much of the interest and importance of calculus are also considered. This text is organized into six chapters. Chapter I deals with linear algebra and geometry of Euclidean n-space Rn. The multivariable differential calculus is treated in Chapters II and III, while multivariable integral calculus is covered in Chapters IV and V. The last chapter is devoted to venerable problems of the calculus of variations. This publication is intended for students who have completed a standard introductory calculus sequence.
Advanced Calculus of Several Variables
Introduction to Analysis in Several Variables: Advanced Calculus
Author: Michael E. Taylor
Publisher: American Mathematical Soc.
ISBN: 1470456699
Category : Education
Languages : en
Pages : 462
Book Description
This text was produced for the second part of a two-part sequence on advanced calculus, whose aim is to provide a firm logical foundation for analysis. The first part treats analysis in one variable, and the text at hand treats analysis in several variables. After a review of topics from one-variable analysis and linear algebra, the text treats in succession multivariable differential calculus, including systems of differential equations, and multivariable integral calculus. It builds on this to develop calculus on surfaces in Euclidean space and also on manifolds. It introduces differential forms and establishes a general Stokes formula. It describes various applications of Stokes formula, from harmonic functions to degree theory. The text then studies the differential geometry of surfaces, including geodesics and curvature, and makes contact with degree theory, via the Gauss–Bonnet theorem. The text also takes up Fourier analysis, and bridges this with results on surfaces, via Fourier analysis on spheres and on compact matrix groups.
Publisher: American Mathematical Soc.
ISBN: 1470456699
Category : Education
Languages : en
Pages : 462
Book Description
This text was produced for the second part of a two-part sequence on advanced calculus, whose aim is to provide a firm logical foundation for analysis. The first part treats analysis in one variable, and the text at hand treats analysis in several variables. After a review of topics from one-variable analysis and linear algebra, the text treats in succession multivariable differential calculus, including systems of differential equations, and multivariable integral calculus. It builds on this to develop calculus on surfaces in Euclidean space and also on manifolds. It introduces differential forms and establishes a general Stokes formula. It describes various applications of Stokes formula, from harmonic functions to degree theory. The text then studies the differential geometry of surfaces, including geodesics and curvature, and makes contact with degree theory, via the Gauss–Bonnet theorem. The text also takes up Fourier analysis, and bridges this with results on surfaces, via Fourier analysis on spheres and on compact matrix groups.
Calculus of Several Variables
Author: Serge Lang
Publisher: Springer Science & Business Media
ISBN: 1461210682
Category : Mathematics
Languages : en
Pages : 624
Book Description
This new, revised edition covers all of the basic topics in calculus of several variables, including vectors, curves, functions of several variables, gradient, tangent plane, maxima and minima, potential functions, curve integrals, Green’s theorem, multiple integrals, surface integrals, Stokes’ theorem, and the inverse mapping theorem and its consequences. It includes many completely worked-out problems.
Publisher: Springer Science & Business Media
ISBN: 1461210682
Category : Mathematics
Languages : en
Pages : 624
Book Description
This new, revised edition covers all of the basic topics in calculus of several variables, including vectors, curves, functions of several variables, gradient, tangent plane, maxima and minima, potential functions, curve integrals, Green’s theorem, multiple integrals, surface integrals, Stokes’ theorem, and the inverse mapping theorem and its consequences. It includes many completely worked-out problems.
Advanced Calculus (Revised Edition)
Author: Lynn Harold Loomis
Publisher: World Scientific Publishing Company
ISBN: 9814583952
Category : Mathematics
Languages : en
Pages : 595
Book Description
An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.
Publisher: World Scientific Publishing Company
ISBN: 9814583952
Category : Mathematics
Languages : en
Pages : 595
Book Description
An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.
Advanced Calculus
Author: Avner Friedman
Publisher: Courier Corporation
ISBN: 0486137864
Category : Mathematics
Languages : en
Pages : 434
Book Description
Intended for students who have already completed a one-year course in elementary calculus, this two-part treatment advances from functions of one variable to those of several variables. Solutions. 1971 edition.
Publisher: Courier Corporation
ISBN: 0486137864
Category : Mathematics
Languages : en
Pages : 434
Book Description
Intended for students who have already completed a one-year course in elementary calculus, this two-part treatment advances from functions of one variable to those of several variables. Solutions. 1971 edition.
Functions of Several Variables
Author: Wendell Fleming
Publisher: Springer Science & Business Media
ISBN: 1468494619
Category : Mathematics
Languages : en
Pages : 420
Book Description
This new edition, like the first, presents a thorough introduction to differential and integral calculus, including the integration of differential forms on manifolds. However, an additional chapter on elementary topology makes the book more complete as an advanced calculus text, and sections have been added introducing physical applications in thermodynamics, fluid dynamics, and classical rigid body mechanics.
Publisher: Springer Science & Business Media
ISBN: 1468494619
Category : Mathematics
Languages : en
Pages : 420
Book Description
This new edition, like the first, presents a thorough introduction to differential and integral calculus, including the integration of differential forms on manifolds. However, an additional chapter on elementary topology makes the book more complete as an advanced calculus text, and sections have been added introducing physical applications in thermodynamics, fluid dynamics, and classical rigid body mechanics.
Advanced Calculus
Author: Harold M. Edwards
Publisher: Springer Science & Business Media
ISBN: 9780817637071
Category : Education
Languages : en
Pages : 532
Book Description
This book is a high-level introduction to vector calculus based solidly on differential forms. Informal but sophisticated, it is geometrically and physically intuitive yet mathematically rigorous. It offers remarkably diverse applications, physical and mathematical, and provides a firm foundation for further studies.
Publisher: Springer Science & Business Media
ISBN: 9780817637071
Category : Education
Languages : en
Pages : 532
Book Description
This book is a high-level introduction to vector calculus based solidly on differential forms. Informal but sophisticated, it is geometrically and physically intuitive yet mathematically rigorous. It offers remarkably diverse applications, physical and mathematical, and provides a firm foundation for further studies.
Multivariable Calculus
Author: L. Corwin
Publisher: CRC Press
ISBN: 1351429531
Category : Mathematics
Languages : en
Pages : 545
Book Description
Classroom-tested and lucidly written, Multivariable Calculus gives a thorough and rigoroustreatment of differential and integral calculus of functions of several variables. Designed as ajunior-level textbook for an advanced calculus course, this book covers a variety of notions,including continuity , differentiation, multiple integrals, line and surface integrals, differentialforms, and infinite series. Numerous exercises and examples throughout the book facilitatethe student's understanding of important concepts.The level of rigor in this textbook is high; virtually every result is accompanied by a proof. Toaccommodate teachers' individual needs, the material is organized so that proofs can be deemphasizedor even omitted. Linear algebra for n-dimensional Euclidean space is developedwhen required for the calculus; for example, linear transformations are discussed for the treatmentof derivatives.Featuring a detailed discussion of differential forms and Stokes' theorem, Multivariable Calculusis an excellent textbook for junior-level advanced calculus courses and it is also usefulfor sophomores who have a strong background in single-variable calculus. A two-year calculussequence or a one-year honor calculus course is required for the most successful use of thistextbook. Students will benefit enormously from this book's systematic approach to mathematicalanalysis, which will ultimately prepare them for more advanced topics in the field.
Publisher: CRC Press
ISBN: 1351429531
Category : Mathematics
Languages : en
Pages : 545
Book Description
Classroom-tested and lucidly written, Multivariable Calculus gives a thorough and rigoroustreatment of differential and integral calculus of functions of several variables. Designed as ajunior-level textbook for an advanced calculus course, this book covers a variety of notions,including continuity , differentiation, multiple integrals, line and surface integrals, differentialforms, and infinite series. Numerous exercises and examples throughout the book facilitatethe student's understanding of important concepts.The level of rigor in this textbook is high; virtually every result is accompanied by a proof. Toaccommodate teachers' individual needs, the material is organized so that proofs can be deemphasizedor even omitted. Linear algebra for n-dimensional Euclidean space is developedwhen required for the calculus; for example, linear transformations are discussed for the treatmentof derivatives.Featuring a detailed discussion of differential forms and Stokes' theorem, Multivariable Calculusis an excellent textbook for junior-level advanced calculus courses and it is also usefulfor sophomores who have a strong background in single-variable calculus. A two-year calculussequence or a one-year honor calculus course is required for the most successful use of thistextbook. Students will benefit enormously from this book's systematic approach to mathematicalanalysis, which will ultimately prepare them for more advanced topics in the field.
Calculus on Manifolds
Author: Michael Spivak
Publisher: Westview Press
ISBN: 9780805390216
Category : Science
Languages : en
Pages : 164
Book Description
This book uses elementary versions of modern methods found in sophisticated mathematics to discuss portions of "advanced calculus" in which the subtlety of the concepts and methods makes rigor difficult to attain at an elementary level.
Publisher: Westview Press
ISBN: 9780805390216
Category : Science
Languages : en
Pages : 164
Book Description
This book uses elementary versions of modern methods found in sophisticated mathematics to discuss portions of "advanced calculus" in which the subtlety of the concepts and methods makes rigor difficult to attain at an elementary level.
Advanced Calculus
Author: Patrick Fitzpatrick
Publisher: American Mathematical Soc.
ISBN: 0821847910
Category : Mathematics
Languages : en
Pages : 610
Book Description
"Advanced Calculus is intended as a text for courses that furnish the backbone of the student's undergraduate education in mathematical analysis. The goal is to rigorously present the fundamental concepts within the context of illuminating examples and stimulating exercises. This book is self-contained and starts with the creation of basic tools using the completeness axiom. The continuity, differentiability, integrability, and power series representation properties of functions of a single variable are established. The next few chapters describe the topological and metric properties of Euclidean space. These are the basis of a rigorous treatment of differential calculus (including the Implicit Function Theorem and Lagrange Multipliers) for mappings between Euclidean spaces and integration for functions of several real variables."--pub. desc.
Publisher: American Mathematical Soc.
ISBN: 0821847910
Category : Mathematics
Languages : en
Pages : 610
Book Description
"Advanced Calculus is intended as a text for courses that furnish the backbone of the student's undergraduate education in mathematical analysis. The goal is to rigorously present the fundamental concepts within the context of illuminating examples and stimulating exercises. This book is self-contained and starts with the creation of basic tools using the completeness axiom. The continuity, differentiability, integrability, and power series representation properties of functions of a single variable are established. The next few chapters describe the topological and metric properties of Euclidean space. These are the basis of a rigorous treatment of differential calculus (including the Implicit Function Theorem and Lagrange Multipliers) for mappings between Euclidean spaces and integration for functions of several real variables."--pub. desc.