Author: Li Zhang
Publisher: Frontiers Media SA
ISBN: 283255055X
Category : Science
Languages : en
Pages : 149
Book Description
Large databases are created by genomics for the discovery, study, and development of novel treatments all around the world. It's not hard to conceive that artificial intelligence (AI) might currently study the 3 billion base pairs that make up humanoid genetic makeup in order to uncover genetic disparities among the population. By 2026, large pharmaceutical companies hope to have researched up to 2 million genomes and analyzed massive amounts of patient data from clinical drug studies. As new equipment is introduced, AI will be employed in genomics for a variety of omics investigations, including transcriptomics. To aid in the classification of potentially clinically significant genes, AI is used to combine data from genomic research with literature analysis. Machine learning is now a critical component of the genomics industry's growth. AI and Machine learning in genomics is already having an impact on a number of areas, including genetic testing, medical care delivery, and genomics accessibility for people interested in learning more about how their genes influence their health. The purpose of this research is to explore AI and Machine learning applications in gene technology and their roles in paving the way for future genomics machine learning applications.
Adoption of Artificial Intelligence in Human and Clinical Genomics, volume II
Author: Li Zhang
Publisher: Frontiers Media SA
ISBN: 283255055X
Category : Science
Languages : en
Pages : 149
Book Description
Large databases are created by genomics for the discovery, study, and development of novel treatments all around the world. It's not hard to conceive that artificial intelligence (AI) might currently study the 3 billion base pairs that make up humanoid genetic makeup in order to uncover genetic disparities among the population. By 2026, large pharmaceutical companies hope to have researched up to 2 million genomes and analyzed massive amounts of patient data from clinical drug studies. As new equipment is introduced, AI will be employed in genomics for a variety of omics investigations, including transcriptomics. To aid in the classification of potentially clinically significant genes, AI is used to combine data from genomic research with literature analysis. Machine learning is now a critical component of the genomics industry's growth. AI and Machine learning in genomics is already having an impact on a number of areas, including genetic testing, medical care delivery, and genomics accessibility for people interested in learning more about how their genes influence their health. The purpose of this research is to explore AI and Machine learning applications in gene technology and their roles in paving the way for future genomics machine learning applications.
Publisher: Frontiers Media SA
ISBN: 283255055X
Category : Science
Languages : en
Pages : 149
Book Description
Large databases are created by genomics for the discovery, study, and development of novel treatments all around the world. It's not hard to conceive that artificial intelligence (AI) might currently study the 3 billion base pairs that make up humanoid genetic makeup in order to uncover genetic disparities among the population. By 2026, large pharmaceutical companies hope to have researched up to 2 million genomes and analyzed massive amounts of patient data from clinical drug studies. As new equipment is introduced, AI will be employed in genomics for a variety of omics investigations, including transcriptomics. To aid in the classification of potentially clinically significant genes, AI is used to combine data from genomic research with literature analysis. Machine learning is now a critical component of the genomics industry's growth. AI and Machine learning in genomics is already having an impact on a number of areas, including genetic testing, medical care delivery, and genomics accessibility for people interested in learning more about how their genes influence their health. The purpose of this research is to explore AI and Machine learning applications in gene technology and their roles in paving the way for future genomics machine learning applications.
Adoption of Artificial Intelligence in Human and Clinical Genomics
Author: Deepak Kumar Jain
Publisher: Frontiers Media SA
ISBN: 2832521843
Category : Science
Languages : en
Pages : 136
Book Description
Publisher: Frontiers Media SA
ISBN: 2832521843
Category : Science
Languages : en
Pages : 136
Book Description
Artificial Intelligence in Healthcare
Author: Adam Bohr
Publisher: Academic Press
ISBN: 0128184396
Category : Computers
Languages : en
Pages : 385
Book Description
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Publisher: Academic Press
ISBN: 0128184396
Category : Computers
Languages : en
Pages : 385
Book Description
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
Artificial Intelligence in the Clinical Laboratory: Current Practice and Emerging Opportunities, An Issue of the Clinics in Laboratory Medicine, E-Book
Author: Jason Baron
Publisher: Elsevier Health Sciences
ISBN: 0323939848
Category : Medical
Languages : en
Pages : 161
Book Description
In this issue, guest editors bring their considerable expertise to this important topic.Provides in-depth reviews on the latest updates in the field, providing actionable insights for clinical practice. Presents the latest information on this timely, focused topic under the leadership of experienced editors in the field. Authors synthesize
Publisher: Elsevier Health Sciences
ISBN: 0323939848
Category : Medical
Languages : en
Pages : 161
Book Description
In this issue, guest editors bring their considerable expertise to this important topic.Provides in-depth reviews on the latest updates in the field, providing actionable insights for clinical practice. Presents the latest information on this timely, focused topic under the leadership of experienced editors in the field. Authors synthesize
Precision Medicine and Artificial Intelligence
Author: Michael Mahler
Publisher: Academic Press
ISBN: 032385432X
Category : Science
Languages : en
Pages : 302
Book Description
Precision Medicine and Artificial Intelligence: The Perfect Fit for Autoimmunity covers background on artificial intelligence (AI), its link to precision medicine (PM), and examples of AI in healthcare, especially autoimmunity. The book highlights future perspectives and potential directions as AI has gained significant attention during the past decade. Autoimmune diseases are complex and heterogeneous conditions, but exciting new developments and implementation tactics surrounding automated systems have enabled the generation of large datasets, making autoimmunity an ideal target for AI and precision medicine. More and more diagnostic products utilize AI, which is also starting to be supported by regulatory agencies such as the Food and Drug Administration (FDA). Knowledge generation by leveraging large datasets including demographic, environmental, clinical and biomarker data has the potential to not only impact the diagnosis of patients, but also disease prediction, prognosis and treatment options. - Allows the readers to gain an overview on precision medicine for autoimmune diseases leveraging AI solutions - Provides background, milestone and examples of precision medicine - Outlines the paradigm shift towards precision medicine driven by value-based systems - Discusses future applications of precision medicine research using AI - Other aspects covered in the book include regulatory insights, data analytics and visualization, types of biomarkers as well as the role of the patient in precision medicine
Publisher: Academic Press
ISBN: 032385432X
Category : Science
Languages : en
Pages : 302
Book Description
Precision Medicine and Artificial Intelligence: The Perfect Fit for Autoimmunity covers background on artificial intelligence (AI), its link to precision medicine (PM), and examples of AI in healthcare, especially autoimmunity. The book highlights future perspectives and potential directions as AI has gained significant attention during the past decade. Autoimmune diseases are complex and heterogeneous conditions, but exciting new developments and implementation tactics surrounding automated systems have enabled the generation of large datasets, making autoimmunity an ideal target for AI and precision medicine. More and more diagnostic products utilize AI, which is also starting to be supported by regulatory agencies such as the Food and Drug Administration (FDA). Knowledge generation by leveraging large datasets including demographic, environmental, clinical and biomarker data has the potential to not only impact the diagnosis of patients, but also disease prediction, prognosis and treatment options. - Allows the readers to gain an overview on precision medicine for autoimmune diseases leveraging AI solutions - Provides background, milestone and examples of precision medicine - Outlines the paradigm shift towards precision medicine driven by value-based systems - Discusses future applications of precision medicine research using AI - Other aspects covered in the book include regulatory insights, data analytics and visualization, types of biomarkers as well as the role of the patient in precision medicine
Artificial Intelligence in Clinical Practice
Author: Chayakrit Krittanawong
Publisher: Elsevier
ISBN: 0443156891
Category : Computers
Languages : en
Pages : 550
Book Description
Artificial Intelligence in Clinical Practice: How AI Technologies Impact Medical Research and Clinics compiles current research on Artificial Intelligence within medical subspecialties, helping practitioners with diagnosis, clinical decision-making, disease prediction, prevention, and the facilitation of precision medicine. The book defines the basic concepts of big data and AI in medicine and highlights current applications, challenges, ethical issues, and biases. Each chapter discusses AI applied to a specific medical subspecialty, including primary care, preventive medicine, general internal medicine, radiology, pathology, infectious disease, gastroenterology, cardiology, hematology, oncology, dermatology, ophthalmology, mental health, neurology, pulmonary, critical care, rheumatology, surgery, and OB-GYN. This is a valuable resource for clinicians, students, researchers and members of medical and biomedical fields who are interested in learning more about artificial intelligence technologies and their applications in medicine. Provides the history and overview of the various modalities of AI and their applications within each field of medicine Discusses current AI-based medical research, including landmark trials within each field of medicine Addresses the current knowledge gaps that clinicians commonly face that prevent the application of AI-based research to clinical practice Encompasses examples of specific cases and discusses challenges and biases associated with AI
Publisher: Elsevier
ISBN: 0443156891
Category : Computers
Languages : en
Pages : 550
Book Description
Artificial Intelligence in Clinical Practice: How AI Technologies Impact Medical Research and Clinics compiles current research on Artificial Intelligence within medical subspecialties, helping practitioners with diagnosis, clinical decision-making, disease prediction, prevention, and the facilitation of precision medicine. The book defines the basic concepts of big data and AI in medicine and highlights current applications, challenges, ethical issues, and biases. Each chapter discusses AI applied to a specific medical subspecialty, including primary care, preventive medicine, general internal medicine, radiology, pathology, infectious disease, gastroenterology, cardiology, hematology, oncology, dermatology, ophthalmology, mental health, neurology, pulmonary, critical care, rheumatology, surgery, and OB-GYN. This is a valuable resource for clinicians, students, researchers and members of medical and biomedical fields who are interested in learning more about artificial intelligence technologies and their applications in medicine. Provides the history and overview of the various modalities of AI and their applications within each field of medicine Discusses current AI-based medical research, including landmark trials within each field of medicine Addresses the current knowledge gaps that clinicians commonly face that prevent the application of AI-based research to clinical practice Encompasses examples of specific cases and discusses challenges and biases associated with AI
Oxford Handbook of Ethics of AI
Author: Markus D. Dubber
Publisher: Oxford University Press
ISBN: 0190067411
Category : Law
Languages : en
Pages : 1000
Book Description
This volume tackles a quickly-evolving field of inquiry, mapping the existing discourse as part of a general attempt to place current developments in historical context; at the same time, breaking new ground in taking on novel subjects and pursuing fresh approaches. The term "A.I." is used to refer to a broad range of phenomena, from machine learning and data mining to artificial general intelligence. The recent advent of more sophisticated AI systems, which function with partial or full autonomy and are capable of tasks which require learning and 'intelligence', presents difficult ethical questions, and has drawn concerns from many quarters about individual and societal welfare, democratic decision-making, moral agency, and the prevention of harm. This work ranges from explorations of normative constraints on specific applications of machine learning algorithms today-in everyday medical practice, for instance-to reflections on the (potential) status of AI as a form of consciousness with attendant rights and duties and, more generally still, on the conceptual terms and frameworks necessarily to understand tasks requiring intelligence, whether "human" or "A.I."
Publisher: Oxford University Press
ISBN: 0190067411
Category : Law
Languages : en
Pages : 1000
Book Description
This volume tackles a quickly-evolving field of inquiry, mapping the existing discourse as part of a general attempt to place current developments in historical context; at the same time, breaking new ground in taking on novel subjects and pursuing fresh approaches. The term "A.I." is used to refer to a broad range of phenomena, from machine learning and data mining to artificial general intelligence. The recent advent of more sophisticated AI systems, which function with partial or full autonomy and are capable of tasks which require learning and 'intelligence', presents difficult ethical questions, and has drawn concerns from many quarters about individual and societal welfare, democratic decision-making, moral agency, and the prevention of harm. This work ranges from explorations of normative constraints on specific applications of machine learning algorithms today-in everyday medical practice, for instance-to reflections on the (potential) status of AI as a form of consciousness with attendant rights and duties and, more generally still, on the conceptual terms and frameworks necessarily to understand tasks requiring intelligence, whether "human" or "A.I."
Future of AI in Biomedicine and Biotechnology
Author: Khade, Shankar Mukundrao
Publisher: IGI Global
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 376
Book Description
The healthcare industry is grappling with numerous challenges, including rising costs, inefficiencies in service delivery, and the need for personalized treatment approaches. Traditional healthcare management and delivery methods must be improved in addressing these issues, leading to a growing demand for innovative solutions. Additionally, the exponential growth of medical data and the complexity of biomedical research and biotechnology presents a daunting challenge in harnessing this data effectively for improved patient care and medical advancements. There is a pressing need for a comprehensive understanding of how artificial intelligence (AI) can be leveraged to tackle these challenges and drive meaningful change in the healthcare sector. Future of AI in Biomedicine and Biotechnology offers a timely and insightful solution to the challenges faced by the healthcare industry. This book is not just a theoretical exploration; it is a practical roadmap for healthcare professionals, researchers, policymakers, and entrepreneurs seeking to navigate the complexities of AI in healthcare. By exploring the intersection of AI with biomedical sciences and biotechnology, this book provides a comprehensive guide to harnessing the power of AI for transformative healthcare innovation.
Publisher: IGI Global
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 376
Book Description
The healthcare industry is grappling with numerous challenges, including rising costs, inefficiencies in service delivery, and the need for personalized treatment approaches. Traditional healthcare management and delivery methods must be improved in addressing these issues, leading to a growing demand for innovative solutions. Additionally, the exponential growth of medical data and the complexity of biomedical research and biotechnology presents a daunting challenge in harnessing this data effectively for improved patient care and medical advancements. There is a pressing need for a comprehensive understanding of how artificial intelligence (AI) can be leveraged to tackle these challenges and drive meaningful change in the healthcare sector. Future of AI in Biomedicine and Biotechnology offers a timely and insightful solution to the challenges faced by the healthcare industry. This book is not just a theoretical exploration; it is a practical roadmap for healthcare professionals, researchers, policymakers, and entrepreneurs seeking to navigate the complexities of AI in healthcare. By exploring the intersection of AI with biomedical sciences and biotechnology, this book provides a comprehensive guide to harnessing the power of AI for transformative healthcare innovation.
Deep Medicine
Author: Eric Topol
Publisher: Basic Books
ISBN: 1541644646
Category : Health & Fitness
Languages : en
Pages : 388
Book Description
A Science Friday pick for book of the year, 2019 One of America's top doctors reveals how AI will empower physicians and revolutionize patient care Medicine has become inhuman, to disastrous effect. The doctor-patient relationship--the heart of medicine--is broken: doctors are too distracted and overwhelmed to truly connect with their patients, and medical errors and misdiagnoses abound. In Deep Medicine, leading physician Eric Topol reveals how artificial intelligence can help. AI has the potential to transform everything doctors do, from notetaking and medical scans to diagnosis and treatment, greatly cutting down the cost of medicine and reducing human mortality. By freeing physicians from the tasks that interfere with human connection, AI will create space for the real healing that takes place between a doctor who can listen and a patient who needs to be heard. Innovative, provocative, and hopeful, Deep Medicine shows us how the awesome power of AI can make medicine better, for all the humans involved.
Publisher: Basic Books
ISBN: 1541644646
Category : Health & Fitness
Languages : en
Pages : 388
Book Description
A Science Friday pick for book of the year, 2019 One of America's top doctors reveals how AI will empower physicians and revolutionize patient care Medicine has become inhuman, to disastrous effect. The doctor-patient relationship--the heart of medicine--is broken: doctors are too distracted and overwhelmed to truly connect with their patients, and medical errors and misdiagnoses abound. In Deep Medicine, leading physician Eric Topol reveals how artificial intelligence can help. AI has the potential to transform everything doctors do, from notetaking and medical scans to diagnosis and treatment, greatly cutting down the cost of medicine and reducing human mortality. By freeing physicians from the tasks that interfere with human connection, AI will create space for the real healing that takes place between a doctor who can listen and a patient who needs to be heard. Innovative, provocative, and hopeful, Deep Medicine shows us how the awesome power of AI can make medicine better, for all the humans involved.
Practical Data Analytics for Innovation in Medicine
Author: Gary D. Miner
Publisher: Academic Press
ISBN: 0323952755
Category : Computers
Languages : en
Pages : 578
Book Description
Practical Data Analytics for Innovation in Medicine: Building Real Predictive and Prescriptive Models in Personalized Healthcare and Medical Research Using AI, ML, and Related Technologies, Second Edition discusses the needs of healthcare and medicine in the 21st century, explaining how data analytics play an important and revolutionary role. With healthcare effectiveness and economics facing growing challenges, there is a rapidly emerging movement to fortify medical treatment and administration by tapping the predictive power of big data, such as predictive analytics, which can bolster patient care, reduce costs, and deliver greater efficiencies across a wide range of operational functions. Sections bring a historical perspective, highlight the importance of using predictive analytics to help solve health crisis such as the COVID-19 pandemic, provide access to practical step-by-step tutorials and case studies online, and use exercises based on real-world examples of successful predictive and prescriptive tools and systems. The final part of the book focuses on specific technical operations related to quality, cost-effective medical and nursing care delivery and administration brought by practical predictive analytics. Brings a historical perspective in medical care to discuss both the current status of health care delivery worldwide and the importance of using modern predictive analytics to help solve the health care crisis Provides online tutorials on several predictive analytics systems to help readers apply their knowledge on today’s medical issues and basic research Teaches how to develop effective predictive analytic research and to create decisioning/prescriptive analytic systems to make medical decisions quicker and more accurate
Publisher: Academic Press
ISBN: 0323952755
Category : Computers
Languages : en
Pages : 578
Book Description
Practical Data Analytics for Innovation in Medicine: Building Real Predictive and Prescriptive Models in Personalized Healthcare and Medical Research Using AI, ML, and Related Technologies, Second Edition discusses the needs of healthcare and medicine in the 21st century, explaining how data analytics play an important and revolutionary role. With healthcare effectiveness and economics facing growing challenges, there is a rapidly emerging movement to fortify medical treatment and administration by tapping the predictive power of big data, such as predictive analytics, which can bolster patient care, reduce costs, and deliver greater efficiencies across a wide range of operational functions. Sections bring a historical perspective, highlight the importance of using predictive analytics to help solve health crisis such as the COVID-19 pandemic, provide access to practical step-by-step tutorials and case studies online, and use exercises based on real-world examples of successful predictive and prescriptive tools and systems. The final part of the book focuses on specific technical operations related to quality, cost-effective medical and nursing care delivery and administration brought by practical predictive analytics. Brings a historical perspective in medical care to discuss both the current status of health care delivery worldwide and the importance of using modern predictive analytics to help solve the health care crisis Provides online tutorials on several predictive analytics systems to help readers apply their knowledge on today’s medical issues and basic research Teaches how to develop effective predictive analytic research and to create decisioning/prescriptive analytic systems to make medical decisions quicker and more accurate