Author: Je-Chin Han
Publisher: CRC Press
ISBN: 1439855684
Category : Science
Languages : en
Pages : 892
Book Description
A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What’s New in the Second Edition: State-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling Modern experimental methods for gas turbine heat transfer and cooling research Advanced computational models for gas turbine heat transfer and cooling performance predictions Suggestions for future research in this critical technology The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling.
Gas Turbine Heat Transfer and Cooling Technology, Second Edition
Author: Je-Chin Han
Publisher: CRC Press
ISBN: 1439855684
Category : Science
Languages : en
Pages : 892
Book Description
A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What’s New in the Second Edition: State-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling Modern experimental methods for gas turbine heat transfer and cooling research Advanced computational models for gas turbine heat transfer and cooling performance predictions Suggestions for future research in this critical technology The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling.
Publisher: CRC Press
ISBN: 1439855684
Category : Science
Languages : en
Pages : 892
Book Description
A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What’s New in the Second Edition: State-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling Modern experimental methods for gas turbine heat transfer and cooling research Advanced computational models for gas turbine heat transfer and cooling performance predictions Suggestions for future research in this critical technology The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling.
Heat Transfer on a Film-Cooled Blade - Effect of Hole Physics
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 18
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 18
Book Description
ASME Technical Papers
Author:
Publisher:
ISBN:
Category : Mechanical engineering
Languages : en
Pages : 484
Book Description
Publisher:
ISBN:
Category : Mechanical engineering
Languages : en
Pages : 484
Book Description
Gas Turbine Blade Cooling
Author: Chaitanya D Ghodke
Publisher: SAE International
ISBN: 0768095026
Category : Technology & Engineering
Languages : en
Pages : 238
Book Description
Gas turbines play an extremely important role in fulfilling a variety of power needs and are mainly used for power generation and propulsion applications. The performance and efficiency of gas turbine engines are to a large extent dependent on turbine rotor inlet temperatures: typically, the hotter the better. In gas turbines, the combustion temperature and the fuel efficiency are limited by the heat transfer properties of the turbine blades. However, in pushing the limits of hot gas temperatures while preventing the melting of blade components in high-pressure turbines, the use of effective cooling technologies is critical. Increasing the turbine inlet temperature also increases heat transferred to the turbine blade, and it is possible that the operating temperature could reach far above permissible metal temperature. In such cases, insufficient cooling of turbine blades results in excessive thermal stress on the blades causing premature blade failure. This may bring hazards to the engine's safe operation. Gas Turbine Blade Cooling, edited by Dr. Chaitanya D. Ghodke, offers 10 handpicked SAE International's technical papers, which identify key aspects of turbine blade cooling and help readers understand how this process can improve the performance of turbine hardware.
Publisher: SAE International
ISBN: 0768095026
Category : Technology & Engineering
Languages : en
Pages : 238
Book Description
Gas turbines play an extremely important role in fulfilling a variety of power needs and are mainly used for power generation and propulsion applications. The performance and efficiency of gas turbine engines are to a large extent dependent on turbine rotor inlet temperatures: typically, the hotter the better. In gas turbines, the combustion temperature and the fuel efficiency are limited by the heat transfer properties of the turbine blades. However, in pushing the limits of hot gas temperatures while preventing the melting of blade components in high-pressure turbines, the use of effective cooling technologies is critical. Increasing the turbine inlet temperature also increases heat transferred to the turbine blade, and it is possible that the operating temperature could reach far above permissible metal temperature. In such cases, insufficient cooling of turbine blades results in excessive thermal stress on the blades causing premature blade failure. This may bring hazards to the engine's safe operation. Gas Turbine Blade Cooling, edited by Dr. Chaitanya D. Ghodke, offers 10 handpicked SAE International's technical papers, which identify key aspects of turbine blade cooling and help readers understand how this process can improve the performance of turbine hardware.
The Gas Turbine Handbook
Author: Tony Giampaolo
Publisher: The Fairmont Press, Inc.
ISBN: 0881734136
Category : Gas-turbines
Languages : en
Pages : 426
Book Description
The second edition of a bestseller, this comprehensive reference provides the fundamental information required to understand both the operation and proper application of all types of gas turbines. The completely updated second edition adds a new section on use of inlet cooling for power augmentation and NOx control. It explores the full spectrum of gas turbines hardware, typical application scenarios, and operating parameters, controls, inlet treatments, inspection, trouble-shooting, and more. The author discusses strategies that can help readers avoid problems before they occur and provides tips that enable diagnosis of problems in their early stages and analysis of failures to prevent their recurrence.
Publisher: The Fairmont Press, Inc.
ISBN: 0881734136
Category : Gas-turbines
Languages : en
Pages : 426
Book Description
The second edition of a bestseller, this comprehensive reference provides the fundamental information required to understand both the operation and proper application of all types of gas turbines. The completely updated second edition adds a new section on use of inlet cooling for power augmentation and NOx control. It explores the full spectrum of gas turbines hardware, typical application scenarios, and operating parameters, controls, inlet treatments, inspection, trouble-shooting, and more. The author discusses strategies that can help readers avoid problems before they occur and provides tips that enable diagnosis of problems in their early stages and analysis of failures to prevent their recurrence.
Heat Transfer in Gas Turbines
Author: Bengt Sundén
Publisher: Witpress
ISBN:
Category : Medical
Languages : en
Pages : 544
Book Description
This title presents and reflects current active research on various heat transfer topics and related phenomena in gas turbine systems. It begins with a general introduction to gas turbine heat transfer, before moving on to specific areas.
Publisher: Witpress
ISBN:
Category : Medical
Languages : en
Pages : 544
Book Description
This title presents and reflects current active research on various heat transfer topics and related phenomena in gas turbine systems. It begins with a general introduction to gas turbine heat transfer, before moving on to specific areas.
Gas Turbine Handbook
Author: Tony Giampaolo
Publisher: CRC Press
ISBN: 8770223130
Category : Technology & Engineering
Languages : en
Pages : 475
Book Description
Newly revised, this new fifth edition includes a chapter on waste heat recovery and discusses this technology in detail including a the advantages and barriers to waste heat recovery, environmental restraints, thermodynamics of heat recovery, fluid properties, boiler, condensers, steam turbines, off design behavior and exhaust catalyst. This book shows how microturbine designs rely heavily on the centrifugal compressor and are, in many aspects, similar to the early flight engines and will illustrate how the approach of the microturbine designer is to minimize cost.
Publisher: CRC Press
ISBN: 8770223130
Category : Technology & Engineering
Languages : en
Pages : 475
Book Description
Newly revised, this new fifth edition includes a chapter on waste heat recovery and discusses this technology in detail including a the advantages and barriers to waste heat recovery, environmental restraints, thermodynamics of heat recovery, fluid properties, boiler, condensers, steam turbines, off design behavior and exhaust catalyst. This book shows how microturbine designs rely heavily on the centrifugal compressor and are, in many aspects, similar to the early flight engines and will illustrate how the approach of the microturbine designer is to minimize cost.
Heat Transfer on a Film-Cooled Rotating Blade
Author: Vijay K. Garg
Publisher:
ISBN:
Category :
Languages : en
Pages : 18
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 18
Book Description
Paper
Author:
Publisher:
ISBN:
Category : Mechanical engineering
Languages : en
Pages : 576
Book Description
Publisher:
ISBN:
Category : Mechanical engineering
Languages : en
Pages : 576
Book Description
Applied Computational Fluid Dynamics
Author: Vijay K. Garg
Publisher: CRC Press
ISBN: 1482270005
Category : Science
Languages : en
Pages : 439
Book Description
"Describes the latest techniques and real-life applications of computational fluid dynamics (CFD) and heat transfer in aeronautics, materials processing and manufacturing, electronic cooling, and environmental control. Includes new material from experienced researchers in the field. Complete with detailed equations for fluid flow and heat transfer.
Publisher: CRC Press
ISBN: 1482270005
Category : Science
Languages : en
Pages : 439
Book Description
"Describes the latest techniques and real-life applications of computational fluid dynamics (CFD) and heat transfer in aeronautics, materials processing and manufacturing, electronic cooling, and environmental control. Includes new material from experienced researchers in the field. Complete with detailed equations for fluid flow and heat transfer.