Adaptive Mesh Refinement for Time-domain Numerical Electromagnetics

Adaptive Mesh Refinement for Time-domain Numerical Electromagnetics PDF Author: Costas D. Sarris
Publisher: Morgan & Claypool Publishers
ISBN: 1598290789
Category : Electromagnetism
Languages : en
Pages : 154

Get Book

Book Description
Therefore, they are excellent computer analysis and design (CAD) tools. The book starts by introducing the FDTD technique, along with challenges related to its application to the analysis of real-life microwave and optical structures. It then proceeds to developing an adaptive mesh refinement method based on the use of multiresolution analysis and, more specifically, the Haar wavelet basis. Furthermore, a new method to embed a moving adaptive mesh in FDTD, the dynamically adaptive mesh refinement (AMR) FDTD technique, is introduced and explained in detail. To highlight the properties of the theoretical tools developed in the text, a number of applications are presented, including: Microwave integrated circuits (microstrip filters, couplers, spiral inductors, cavities); Optical power splitters, Y-junctions, and couplers; Optical ring resonators; Nonlinear optical waveguides.

Adaptive Mesh Refinement for Time-domain Numerical Electromagnetics

Adaptive Mesh Refinement for Time-domain Numerical Electromagnetics PDF Author: Costas D. Sarris
Publisher: Morgan & Claypool Publishers
ISBN: 1598290789
Category : Electromagnetism
Languages : en
Pages : 154

Get Book

Book Description
Therefore, they are excellent computer analysis and design (CAD) tools. The book starts by introducing the FDTD technique, along with challenges related to its application to the analysis of real-life microwave and optical structures. It then proceeds to developing an adaptive mesh refinement method based on the use of multiresolution analysis and, more specifically, the Haar wavelet basis. Furthermore, a new method to embed a moving adaptive mesh in FDTD, the dynamically adaptive mesh refinement (AMR) FDTD technique, is introduced and explained in detail. To highlight the properties of the theoretical tools developed in the text, a number of applications are presented, including: Microwave integrated circuits (microstrip filters, couplers, spiral inductors, cavities); Optical power splitters, Y-junctions, and couplers; Optical ring resonators; Nonlinear optical waveguides.

Adaptive Mesh Refinement in Time-Domain Numerical Electromagnetics

Adaptive Mesh Refinement in Time-Domain Numerical Electromagnetics PDF Author: Costas Sarris
Publisher: Springer Nature
ISBN: 3031016955
Category : Technology & Engineering
Languages : en
Pages : 135

Get Book

Book Description
This monograph is a comprehensive presentation of state-of-the-art methodologies that can dramatically enhance the efficiency of the finite-difference time-domain (FDTD) technique, the most popular electromagnetic field solver of the time-domain form of Maxwell's equations. These methodologies are aimed at optimally tailoring the computational resources needed for the wideband simulation of microwave and optical structures to their geometry, as well as the nature of the field solutions they support. That is achieved by the development of robust “adaptive meshing” approaches, which amount to varying the total number of unknown field quantities in the course of the simulation to adapt to temporally or spatially localized field features. While mesh adaptation is an extremely desirable FDTD feature, known to reduce simulation times by orders of magnitude, it is not always robust. The specific techniques presented in this book are characterized by stability and robustness. Therefore, they are excellent computer analysis and design (CAD) tools. The book starts by introducing the FDTD technique, along with challenges related to its application to the analysis of real-life microwave and optical structures. It then proceeds to developing an adaptive mesh refinement method based on the use of multiresolution analysis and, more specifically, the Haar wavelet basis. Furthermore, a new method to embed a moving adaptive mesh in FDTD, the dynamically adaptive mesh refinement (AMR) FDTD technique, is introduced and explained in detail. To highlight the properties of the theoretical tools developed in the text, a number of applications are presented, including: Microwave integrated circuits (microstrip filters, couplers, spiral inductors, cavities). Optical power splitters, Y-junctions, and couplers Optical ring resonators Nonlinear optical waveguides. Building on first principles of time-domain electromagnetic simulations, this book presents advanced concepts and cutting-edge modeling techniques in an intuitive way for programmers, engineers, and graduate students. It is designed to provide a solid reference for highly efficient time-domain solvers, employed in a wide range of exciting applications in microwave/millimeter-wave and optical engineering.

Numerical Electromagnetics

Numerical Electromagnetics PDF Author: Umran S. Inan
Publisher: Cambridge University Press
ISBN: 1139497987
Category : Science
Languages : en
Pages : 405

Get Book

Book Description
Beginning with the development of finite difference equations, and leading to the complete FDTD algorithm, this is a coherent introduction to the FDTD method (the method of choice for modeling Maxwell's equations). It provides students and professional engineers with everything they need to know to begin writing FDTD simulations from scratch and to develop a thorough understanding of the inner workings of commercial FDTD software. Stability, numerical dispersion, sources and boundary conditions are all discussed in detail, as are dispersive and anisotropic materials. A comparative introduction of the finite volume and finite element methods is also provided. All concepts are introduced from first principles, so no prior modeling experience is required, and they are made easier to understand through numerous illustrative examples and the inclusion of both intuitive explanations and mathematical derivations.

Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics

Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics PDF Author: Stephen Gedney
Publisher: Springer Nature
ISBN: 3031017129
Category : Technology & Engineering
Languages : en
Pages : 242

Get Book

Book Description
Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics provides a comprehensive tutorial of the most widely used method for solving Maxwell's equations -- the Finite Difference Time-Domain Method. This book is an essential guide for students, researchers, and professional engineers who want to gain a fundamental knowledge of the FDTD method. It can accompany an undergraduate or entry-level graduate course or be used for self-study. The book provides all the background required to either research or apply the FDTD method for the solution of Maxwell's equations to practical problems in engineering and science. Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics guides the reader through the foundational theory of the FDTD method starting with the one-dimensional transmission-line problem and then progressing to the solution of Maxwell's equations in three dimensions. It also provides step by step guides to modeling physical sources, lumped-circuit components, absorbing boundary conditions, perfectly matched layer absorbers, and sub-cell structures. Post processing methods such as network parameter extraction and far-field transformations are also detailed. Efficient implementations of the FDTD method in a high level language are also provided. Table of Contents: Introduction / 1D FDTD Modeling of the Transmission Line Equations / Yee Algorithm for Maxwell's Equations / Source Excitations / Absorbing Boundary Conditions / The Perfectly Matched Layer (PML) Absorbing Medium / Subcell Modeling / Post Processing

Scattering Analysis of Periodic Structures using Finite-Difference Time-Domain Method

Scattering Analysis of Periodic Structures using Finite-Difference Time-Domain Method PDF Author: Khaled ElMahgoub
Publisher: Springer Nature
ISBN: 3031017137
Category : Technology & Engineering
Languages : en
Pages : 122

Get Book

Book Description
Periodic structures are of great importance in electromagnetics due to their wide range of applications such as frequency selective surfaces (FSS), electromagnetic band gap (EBG) structures, periodic absorbers, meta-materials, and many others. The aim of this book is to develop efficient computational algorithms to analyze the scattering properties of various electromagnetic periodic structures using the finite-difference time-domain periodic boundary condition (FDTD/PBC) method. A new FDTD/PBC-based algorithm is introduced to analyze general skewed grid periodic structures while another algorithm is developed to analyze dispersive periodic structures. Moreover, the proposed algorithms are successfully integrated with the generalized scattering matrix (GSM) technique, identified as the hybrid FDTD-GSM algorithm, to efficiently analyze multilayer periodic structures. All the developed algorithms are easy to implement and are efficient in both computational time and memory usage. These algorithms are validated through several numerical test cases. The computational methods presented in this book will help scientists and engineers to investigate and design novel periodic structures and to explore other research frontiers in electromagnetics. Table of Contents: Introduction / FDTD Method and Periodic Boundary Conditions / Skewed Grid Periodic Structures / Dispersive Periodic Structures / Multilayered Periodic Structures / Conclusions

Adaptive Mesh Refinement - Theory and Applications

Adaptive Mesh Refinement - Theory and Applications PDF Author: Tomasz Plewa
Publisher: Springer
ISBN: 9783540801092
Category : Mathematics
Languages : en
Pages : 554

Get Book

Book Description
Advanced numerical simulations that use adaptive mesh refinement (AMR) methods have now become routine in engineering and science. Originally developed for computational fluid dynamics applications these methods have propagated to fields as diverse as astrophysics, climate modeling, combustion, biophysics and many others. The underlying physical models and equations used in these disciplines are rather different, yet algorithmic and implementation issues facing practitioners are often remarkably similar. Unfortunately, there has been little effort to review the advances and outstanding issues of adaptive mesh refinement methods across such a variety of fields. This book attempts to bridge this gap. The book presents a collection of papers by experts in the field of AMR who analyze past advances in the field and evaluate the current state of adaptive mesh refinement methods in scientific computing.

MRTD (Multi Resolution Time Domain) Method in Electromagnetics

MRTD (Multi Resolution Time Domain) Method in Electromagnetics PDF Author: Nathan Bushyager
Publisher: Morgan & Claypool Publishers
ISBN: 1598290150
Category : Technology & Engineering
Languages : en
Pages : 116

Get Book

Book Description
This book presents a method that allows the use of multiresolution principles in a time domain electromagnetic modeling technique that is applicable to general structures. The multiresolution time-domain (MRTD) technique, as it is often called, is presented for general basis functions. Additional techniques that are presented here allow the modeling of complex structures using a subcell representation that permits the modeling discrete electromagnetic effects at individual equivalent grid points. This is accomplished by transforming the application of the effects at individual points in the grid into the wavelet domain. In this work, the MRTD technique is derived for a general wavelet basis using a relatively compact vector notation that both makes the technique easier to understand and illustrates the differences between MRTD basis functions. In addition, techniques such as the uniaxial perfectly matched layer (UPML) for arbitrary wavelet resolution and non-uniform gridding are presented. Using these techniques, any structure that can be simulated in Yee-FDTD can be modeled with in MRTD.

Boundary Elements and Other Mesh Reduction Methods Twenty-eight

Boundary Elements and Other Mesh Reduction Methods Twenty-eight PDF Author: C. A. Brebbia
Publisher: WIT Press
ISBN: 1845641647
Category : Mathematics
Languages : en
Pages : 361

Get Book

Book Description
This volume contains papers from the World Conference on Boundary Elements and other Mesh Reduction Methods, an internationally recognized forum for the dissemination of the latest advances on Mesh Reduction Techniques and their applications in sciences and engineering. The book publishes articles dealing with computational issues and software developments in addition to those of a more theoretical nature. Engineers and scientists within the areas of numerical analysis, boundary elements and meshless methods will find the text invaluable. Topics include: Advances in Mesh Reduction Methods; Meshless Techniques; Advanced Formulations; Dual Reciprocity Method; Modified Trefftz Method; Fundamental Solution Method; Damage Mechanics and Fracture; Advanced Structural Applications; Dynamics and Vibrations; Material Characterization; Acoustics; Electrical Engineering and Electromagnetics; Heat and Mass Transfer; Fluid Mechanics Problems; Wave Propagation; Inverse Problems and Computational Techniques.

Advances in Computational Electrodynamics

Advances in Computational Electrodynamics PDF Author: Allen Taflove
Publisher: Artech House Publishers
ISBN:
Category : Diferencias finitas
Languages : en
Pages : 766

Get Book

Book Description
Finite-Difference Time-Domain (FD-TD) modeling is arguably the most popular and powerful means available to perform detailed electromagnetic engineering analyses. Edited by the pioneer and foremost authority on the subject, here is the first book to assemble in one resource the latest techniques and results of the leading theoreticians and practitioners of FD-TD computational electromagnetics modeling.

Time Domain Techniques in Computational Electromagnetics

Time Domain Techniques in Computational Electromagnetics PDF Author: Dragan Poljak
Publisher: Witpress
ISBN:
Category : Science
Languages : en
Pages : 192

Get Book

Book Description
A state-of-the-art review from invited contributors. Subjects covered include: time domain analysis of electromagnetic wave fields by boundary; integral equation method; and transient analysis of thin wires and related time domain energy measures.