Author: Melanie Mitchell
Publisher: MIT Press
ISBN: 9780262631853
Category : Computers
Languages : en
Pages : 226
Book Description
Genetic algorithms have been used in science and engineering as adaptive algorithms for solving practical problems and as computational models of natural evolutionary systems. This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics—particularly in machine learning, scientific modeling, and artificial life—and reviews a broad span of research, including the work of Mitchell and her colleagues. The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting "general purpose" nature of genetic algorithms as search methods that can be employed across disciplines. An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.
An Introduction to Genetic Algorithms
Adaptive Learning by Genetic Algorithms
Author: Herbert Dawid
Publisher: Springer Science & Business Media
ISBN: 3662002116
Category : Business & Economics
Languages : en
Pages : 173
Book Description
An analysis of the learning behavior of genetic algorithms in economic systems with mutual interaction, such as markets. These systems are characterized by a state-dependent fitness function and - for the first time - mathematical results characterizing the long-term outcome of genetic learning in such systems are provided. The usefulness of such results is illustrated by many simulations in evolutionary games and economic models.
Publisher: Springer Science & Business Media
ISBN: 3662002116
Category : Business & Economics
Languages : en
Pages : 173
Book Description
An analysis of the learning behavior of genetic algorithms in economic systems with mutual interaction, such as markets. These systems are characterized by a state-dependent fitness function and - for the first time - mathematical results characterizing the long-term outcome of genetic learning in such systems are provided. The usefulness of such results is illustrated by many simulations in evolutionary games and economic models.
Evolutionary Learning Algorithms for Neural Adaptive Control
Author: Dimitris C. Dracopoulos
Publisher: Springer
ISBN: 1447109031
Category : Computers
Languages : en
Pages : 214
Book Description
Evolutionary Learning Algorithms for Neural Adaptive Control is an advanced textbook, which investigates how neural networks and genetic algorithms can be applied to difficult adaptive control problems which conventional results are either unable to solve , or for which they can not provide satisfactory results. It focuses on the principles involved, rather than on the modelling of the applications themselves, and therefore provides the reader with a good introduction to the fundamental issues involved.
Publisher: Springer
ISBN: 1447109031
Category : Computers
Languages : en
Pages : 214
Book Description
Evolutionary Learning Algorithms for Neural Adaptive Control is an advanced textbook, which investigates how neural networks and genetic algorithms can be applied to difficult adaptive control problems which conventional results are either unable to solve , or for which they can not provide satisfactory results. It focuses on the principles involved, rather than on the modelling of the applications themselves, and therefore provides the reader with a good introduction to the fundamental issues involved.
Adaptation in Natural and Artificial Systems
Author: John H. Holland
Publisher: MIT Press
ISBN: 9780262581110
Category : Psychology
Languages : en
Pages : 236
Book Description
Genetic algorithms are playing an increasingly important role in studies of complex adaptive systems, ranging from adaptive agents in economic theory to the use of machine learning techniques in the design of complex devices such as aircraft turbines and integrated circuits. Adaptation in Natural and Artificial Systems is the book that initiated this field of study, presenting the theoretical foundations and exploring applications. In its most familiar form, adaptation is a biological process, whereby organisms evolve by rearranging genetic material to survive in environments confronting them. In this now classic work, Holland presents a mathematical model that allows for the nonlinearity of such complex interactions. He demonstrates the model's universality by applying it to economics, physiological psychology, game theory, and artificial intelligence and then outlines the way in which this approach modifies the traditional views of mathematical genetics. Initially applying his concepts to simply defined artificial systems with limited numbers of parameters, Holland goes on to explore their use in the study of a wide range of complex, naturally occuring processes, concentrating on systems having multiple factors that interact in nonlinear ways. Along the way he accounts for major effects of coadaptation and coevolution: the emergence of building blocks, or schemata, that are recombined and passed on to succeeding generations to provide, innovations and improvements.
Publisher: MIT Press
ISBN: 9780262581110
Category : Psychology
Languages : en
Pages : 236
Book Description
Genetic algorithms are playing an increasingly important role in studies of complex adaptive systems, ranging from adaptive agents in economic theory to the use of machine learning techniques in the design of complex devices such as aircraft turbines and integrated circuits. Adaptation in Natural and Artificial Systems is the book that initiated this field of study, presenting the theoretical foundations and exploring applications. In its most familiar form, adaptation is a biological process, whereby organisms evolve by rearranging genetic material to survive in environments confronting them. In this now classic work, Holland presents a mathematical model that allows for the nonlinearity of such complex interactions. He demonstrates the model's universality by applying it to economics, physiological psychology, game theory, and artificial intelligence and then outlines the way in which this approach modifies the traditional views of mathematical genetics. Initially applying his concepts to simply defined artificial systems with limited numbers of parameters, Holland goes on to explore their use in the study of a wide range of complex, naturally occuring processes, concentrating on systems having multiple factors that interact in nonlinear ways. Along the way he accounts for major effects of coadaptation and coevolution: the emergence of building blocks, or schemata, that are recombined and passed on to succeeding generations to provide, innovations and improvements.
Soft Computing for Data Mining Applications
Author: K. R. Venugopal
Publisher: Springer Science & Business Media
ISBN: 3642001920
Category : Computers
Languages : en
Pages : 354
Book Description
The authors have consolidated their research work in this volume titled Soft Computing for Data Mining Applications. The monograph gives an insight into the research in the ?elds of Data Mining in combination with Soft Computing methodologies. In these days, the data continues to grow - ponentially. Much of the data is implicitly or explicitly imprecise. Database discovery seeks to discover noteworthy, unrecognized associations between the data items in the existing database. The potential of discovery comes from the realization that alternate contexts may reveal additional valuable information. The rate at which the data is storedis growing at a phenomenal rate. Asaresult,traditionaladhocmixturesofstatisticaltechniquesanddata managementtools are no longer adequate for analyzing this vast collection of data. Severaldomainswherelargevolumesofdataarestoredincentralizedor distributeddatabasesincludesapplicationslikeinelectroniccommerce,bio- formatics, computer security, Web intelligence, intelligent learning database systems,?nance,marketing,healthcare,telecommunications,andother?elds. E?cient tools and algorithms for knowledge discovery in large data sets have been devised during the recent years. These methods exploit the ca- bility of computers to search huge amounts of data in a fast and e?ective manner. However,the data to be analyzed is imprecise and a?icted with - certainty. In the case of heterogeneous data sources such as text and video, the data might moreover be ambiguous and partly con?icting. Besides, p- terns and relationships of interest are usually approximate. Thus, in order to make the information mining process more robust it requires tolerance toward imprecision, uncertainty and exceptions.
Publisher: Springer Science & Business Media
ISBN: 3642001920
Category : Computers
Languages : en
Pages : 354
Book Description
The authors have consolidated their research work in this volume titled Soft Computing for Data Mining Applications. The monograph gives an insight into the research in the ?elds of Data Mining in combination with Soft Computing methodologies. In these days, the data continues to grow - ponentially. Much of the data is implicitly or explicitly imprecise. Database discovery seeks to discover noteworthy, unrecognized associations between the data items in the existing database. The potential of discovery comes from the realization that alternate contexts may reveal additional valuable information. The rate at which the data is storedis growing at a phenomenal rate. Asaresult,traditionaladhocmixturesofstatisticaltechniquesanddata managementtools are no longer adequate for analyzing this vast collection of data. Severaldomainswherelargevolumesofdataarestoredincentralizedor distributeddatabasesincludesapplicationslikeinelectroniccommerce,bio- formatics, computer security, Web intelligence, intelligent learning database systems,?nance,marketing,healthcare,telecommunications,andother?elds. E?cient tools and algorithms for knowledge discovery in large data sets have been devised during the recent years. These methods exploit the ca- bility of computers to search huge amounts of data in a fast and e?ective manner. However,the data to be analyzed is imprecise and a?icted with - certainty. In the case of heterogeneous data sources such as text and video, the data might moreover be ambiguous and partly con?icting. Besides, p- terns and relationships of interest are usually approximate. Thus, in order to make the information mining process more robust it requires tolerance toward imprecision, uncertainty and exceptions.
Advances in Genetic Programming
Author: Kenneth E. Kinnear (Jr.)
Publisher: MIT Press
ISBN: 9780262111881
Category : Computers
Languages : en
Pages : 544
Book Description
Advances in Genetic Programming reports significant results in improving the power of genetic programming, presenting techniques that can be employed immediately in the solution of complex problems in many areas, including machine learning and the simulation of autonomous behavior. Popular languages such as C and C++ are used in manu of the applications and experiments, illustrating how genetic programming is not restricted to symbolic computing languages such as LISP. Researchers interested in getting started in genetic programming will find information on how to begin, on what public-domain code is available, and on how to become part of the active genetic programming community via electronic mail.
Publisher: MIT Press
ISBN: 9780262111881
Category : Computers
Languages : en
Pages : 544
Book Description
Advances in Genetic Programming reports significant results in improving the power of genetic programming, presenting techniques that can be employed immediately in the solution of complex problems in many areas, including machine learning and the simulation of autonomous behavior. Popular languages such as C and C++ are used in manu of the applications and experiments, illustrating how genetic programming is not restricted to symbolic computing languages such as LISP. Researchers interested in getting started in genetic programming will find information on how to begin, on what public-domain code is available, and on how to become part of the active genetic programming community via electronic mail.
Adaptive Learning of Polynomial Networks
Author: Nikolay Nikolaev
Publisher: Springer Science & Business Media
ISBN: 0387312404
Category : Computers
Languages : en
Pages : 329
Book Description
This book delivers theoretical and practical knowledge for developing algorithms that infer linear and non-linear multivariate models, providing a methodology for inductive learning of polynomial neural network models (PNN) from data. The text emphasizes an organized model identification process by which to discover models that generalize and predict well. The book further facilitates the discovery of polynomial models for time-series prediction.
Publisher: Springer Science & Business Media
ISBN: 0387312404
Category : Computers
Languages : en
Pages : 329
Book Description
This book delivers theoretical and practical knowledge for developing algorithms that infer linear and non-linear multivariate models, providing a methodology for inductive learning of polynomial neural network models (PNN) from data. The text emphasizes an organized model identification process by which to discover models that generalize and predict well. The book further facilitates the discovery of polynomial models for time-series prediction.
Adaptive Learning by Genetic Algorithms
Author: Herbert Dawid
Publisher:
ISBN: 9783662002124
Category :
Languages : en
Pages : 184
Book Description
Publisher:
ISBN: 9783662002124
Category :
Languages : en
Pages : 184
Book Description
Meta-Heuristics
Author: Stefan Voß
Publisher: Springer Science & Business Media
ISBN: 1461557755
Category : Business & Economics
Languages : en
Pages : 513
Book Description
Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimizations comprises a carefully refereed selection of extended versions of the best papers presented at the Second Meta-Heuristics Conference (MIC 97). The selected articles describe the most recent developments in theory and applications of meta-heuristics, heuristics for specific problems, and comparative case studies. The book is divided into six parts, grouped mainly by the techniques considered. The extensive first part with twelve papers covers tabu search and its application to a great variety of well-known combinatorial optimization problems (including the resource-constrained project scheduling problem and vehicle routing problems). In the second part we find one paper where tabu search and simulated annealing are investigated comparatively and two papers which consider hybrid methods combining tabu search with genetic algorithms. The third part has four papers on genetic and evolutionary algorithms. Part four arrives at a new paradigm within meta-heuristics. The fifth part studies the behavior of parallel local search algorithms mainly from a tabu search perspective. The final part examines a great variety of additional meta-heuristics topics, including neural networks and variable neighbourhood search as well as guided local search. Furthermore, the integration of meta-heuristics with the branch-and-bound paradigm is investigated.
Publisher: Springer Science & Business Media
ISBN: 1461557755
Category : Business & Economics
Languages : en
Pages : 513
Book Description
Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimizations comprises a carefully refereed selection of extended versions of the best papers presented at the Second Meta-Heuristics Conference (MIC 97). The selected articles describe the most recent developments in theory and applications of meta-heuristics, heuristics for specific problems, and comparative case studies. The book is divided into six parts, grouped mainly by the techniques considered. The extensive first part with twelve papers covers tabu search and its application to a great variety of well-known combinatorial optimization problems (including the resource-constrained project scheduling problem and vehicle routing problems). In the second part we find one paper where tabu search and simulated annealing are investigated comparatively and two papers which consider hybrid methods combining tabu search with genetic algorithms. The third part has four papers on genetic and evolutionary algorithms. Part four arrives at a new paradigm within meta-heuristics. The fifth part studies the behavior of parallel local search algorithms mainly from a tabu search perspective. The final part examines a great variety of additional meta-heuristics topics, including neural networks and variable neighbourhood search as well as guided local search. Furthermore, the integration of meta-heuristics with the branch-and-bound paradigm is investigated.
Advancements in Mechatronics and Intelligent Robotics
Author: Zhengtao Yu
Publisher: Springer Nature
ISBN: 9811618437
Category : Technology & Engineering
Languages : en
Pages : 604
Book Description
This book gathers selected papers presented at the Fourth International Conference on Mechatronics and Intelligent Robotics (ICMIR 2020), held in Kunming, China, on May 22–24, 2020. The proceedings cover new findings in the following areas of research: mechatronics, intelligent mechatronics, robotics and biomimetics; novel and unconventional mechatronic systems; modeling and control of mechatronic systems; elements, structures and mechanisms of micro- and nano-systems; sensors, wireless sensor networks and multi-sensor data fusion; biomedical and rehabilitation engineering, prosthetics and artificial organs; artificial intelligence (AI), neural networks and fuzzy logic in mechatronics and robotics; industrial automation, process control and networked control systems; telerobotics and human–computer interaction; human–robot interaction; robotics and artificial intelligence; bio-inspired robotics; control algorithms and control systems; design theories and principles; evolutional robotics; field robotics; force sensors, accelerometers and other measuring devices; healthcare robotics; kinematics and dynamics analysis; manufacturing robotics; mathematical and computational methodologies in robotics; medical robotics; parallel robots and manipulators; robotic cognition and emotion; robotic perception and decisions; sensor integration, fusion and perception; and social robotics.
Publisher: Springer Nature
ISBN: 9811618437
Category : Technology & Engineering
Languages : en
Pages : 604
Book Description
This book gathers selected papers presented at the Fourth International Conference on Mechatronics and Intelligent Robotics (ICMIR 2020), held in Kunming, China, on May 22–24, 2020. The proceedings cover new findings in the following areas of research: mechatronics, intelligent mechatronics, robotics and biomimetics; novel and unconventional mechatronic systems; modeling and control of mechatronic systems; elements, structures and mechanisms of micro- and nano-systems; sensors, wireless sensor networks and multi-sensor data fusion; biomedical and rehabilitation engineering, prosthetics and artificial organs; artificial intelligence (AI), neural networks and fuzzy logic in mechatronics and robotics; industrial automation, process control and networked control systems; telerobotics and human–computer interaction; human–robot interaction; robotics and artificial intelligence; bio-inspired robotics; control algorithms and control systems; design theories and principles; evolutional robotics; field robotics; force sensors, accelerometers and other measuring devices; healthcare robotics; kinematics and dynamics analysis; manufacturing robotics; mathematical and computational methodologies in robotics; medical robotics; parallel robots and manipulators; robotic cognition and emotion; robotic perception and decisions; sensor integration, fusion and perception; and social robotics.