Adaptive Learning by Genetic Algorithms

Adaptive Learning by Genetic Algorithms PDF Author: Herbert Dawid
Publisher: Springer Science & Business Media
ISBN: 3662002116
Category : Business & Economics
Languages : en
Pages : 173

Get Book Here

Book Description
An analysis of the learning behavior of genetic algorithms in economic systems with mutual interaction, such as markets. These systems are characterized by a state-dependent fitness function and - for the first time - mathematical results characterizing the long-term outcome of genetic learning in such systems are provided. The usefulness of such results is illustrated by many simulations in evolutionary games and economic models.

Adaptive Learning by Genetic Algorithms

Adaptive Learning by Genetic Algorithms PDF Author: Herbert Dawid
Publisher: Springer Science & Business Media
ISBN: 3662002116
Category : Business & Economics
Languages : en
Pages : 173

Get Book Here

Book Description
An analysis of the learning behavior of genetic algorithms in economic systems with mutual interaction, such as markets. These systems are characterized by a state-dependent fitness function and - for the first time - mathematical results characterizing the long-term outcome of genetic learning in such systems are provided. The usefulness of such results is illustrated by many simulations in evolutionary games and economic models.

An Introduction to Genetic Algorithms

An Introduction to Genetic Algorithms PDF Author: Melanie Mitchell
Publisher: MIT Press
ISBN: 9780262631853
Category : Computers
Languages : en
Pages : 226

Get Book Here

Book Description
Genetic algorithms have been used in science and engineering as adaptive algorithms for solving practical problems and as computational models of natural evolutionary systems. This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics—particularly in machine learning, scientific modeling, and artificial life—and reviews a broad span of research, including the work of Mitchell and her colleagues. The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting "general purpose" nature of genetic algorithms as search methods that can be employed across disciplines. An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.

Evolutionary Learning Algorithms for Neural Adaptive Control

Evolutionary Learning Algorithms for Neural Adaptive Control PDF Author: Dimitris C. Dracopoulos
Publisher: Springer
ISBN: 1447109031
Category : Computers
Languages : en
Pages : 214

Get Book Here

Book Description
Evolutionary Learning Algorithms for Neural Adaptive Control is an advanced textbook, which investigates how neural networks and genetic algorithms can be applied to difficult adaptive control problems which conventional results are either unable to solve , or for which they can not provide satisfactory results. It focuses on the principles involved, rather than on the modelling of the applications themselves, and therefore provides the reader with a good introduction to the fundamental issues involved.

Soft Computing for Data Mining Applications

Soft Computing for Data Mining Applications PDF Author: K. R. Venugopal
Publisher: Springer
ISBN: 3642001939
Category : Computers
Languages : en
Pages : 354

Get Book Here

Book Description
The authors have consolidated their research work in this volume titled Soft Computing for Data Mining Applications. The monograph gives an insight into the research in the ?elds of Data Mining in combination with Soft Computing methodologies. In these days, the data continues to grow - ponentially. Much of the data is implicitly or explicitly imprecise. Database discovery seeks to discover noteworthy, unrecognized associations between the data items in the existing database. The potential of discovery comes from the realization that alternate contexts may reveal additional valuable information. The rate at which the data is storedis growing at a phenomenal rate. Asaresult,traditionaladhocmixturesofstatisticaltechniquesanddata managementtools are no longer adequate for analyzing this vast collection of data. Severaldomainswherelargevolumesofdataarestoredincentralizedor distributeddatabasesincludesapplicationslikeinelectroniccommerce,bio- formatics, computer security, Web intelligence, intelligent learning database systems,?nance,marketing,healthcare,telecommunications,andother?elds. E?cient tools and algorithms for knowledge discovery in large data sets have been devised during the recent years. These methods exploit the ca- bility of computers to search huge amounts of data in a fast and e?ective manner. However,the data to be analyzed is imprecise and a?icted with - certainty. In the case of heterogeneous data sources such as text and video, the data might moreover be ambiguous and partly con?icting. Besides, p- terns and relationships of interest are usually approximate. Thus, in order to make the information mining process more robust it requires tolerance toward imprecision, uncertainty and exceptions.

Adaptation in Natural and Artificial Systems

Adaptation in Natural and Artificial Systems PDF Author: John H. Holland
Publisher: MIT Press
ISBN: 9780262581110
Category : Psychology
Languages : en
Pages : 236

Get Book Here

Book Description
Genetic algorithms are playing an increasingly important role in studies of complex adaptive systems, ranging from adaptive agents in economic theory to the use of machine learning techniques in the design of complex devices such as aircraft turbines and integrated circuits. Adaptation in Natural and Artificial Systems is the book that initiated this field of study, presenting the theoretical foundations and exploring applications. In its most familiar form, adaptation is a biological process, whereby organisms evolve by rearranging genetic material to survive in environments confronting them. In this now classic work, Holland presents a mathematical model that allows for the nonlinearity of such complex interactions. He demonstrates the model's universality by applying it to economics, physiological psychology, game theory, and artificial intelligence and then outlines the way in which this approach modifies the traditional views of mathematical genetics. Initially applying his concepts to simply defined artificial systems with limited numbers of parameters, Holland goes on to explore their use in the study of a wide range of complex, naturally occuring processes, concentrating on systems having multiple factors that interact in nonlinear ways. Along the way he accounts for major effects of coadaptation and coevolution: the emergence of building blocks, or schemata, that are recombined and passed on to succeeding generations to provide, innovations and improvements.

Advances in Genetic Programming

Advances in Genetic Programming PDF Author: Kenneth E. Kinnear (Jr.)
Publisher: MIT Press
ISBN: 9780262111881
Category : Computers
Languages : en
Pages : 544

Get Book Here

Book Description
Advances in Genetic Programming reports significant results in improving the power of genetic programming, presenting techniques that can be employed immediately in the solution of complex problems in many areas, including machine learning and the simulation of autonomous behavior. Popular languages such as C and C++ are used in manu of the applications and experiments, illustrating how genetic programming is not restricted to symbolic computing languages such as LISP. Researchers interested in getting started in genetic programming will find information on how to begin, on what public-domain code is available, and on how to become part of the active genetic programming community via electronic mail.

Adaptive Learning by Genetic Algorithms

Adaptive Learning by Genetic Algorithms PDF Author: Herbert Dawid
Publisher:
ISBN: 9783662002124
Category :
Languages : en
Pages : 184

Get Book Here

Book Description


Adaptive and Natural Computing Algorithms

Adaptive and Natural Computing Algorithms PDF Author: Bernadete Ribeiro
Publisher: Springer Science & Business Media
ISBN: 3211273891
Category : Computers
Languages : en
Pages : 561

Get Book Here

Book Description
The ICANNGA series of Conferences has been organised since 1993 and has a long history of promoting the principles and understanding of computational intelligence paradigms within the scientific community and is a reference for established workers in this area. Starting in Innsbruck, in Austria (1993), then to Ales in Prance (1995), Norwich in England (1997), Portoroz in Slovenia (1999), Prague in the Czech Republic (2001) and finally Roanne, in France (2003), the ICANNGA series has established itself for experienced workers in the field. The series has also been of value to young researchers wishing both to extend their knowledge and experience and also to meet internationally renowned experts. The 2005 Conference, the seventh in the ICANNGA series, will take place at the University of Coimbra in Portugal, drawing on the experience of previous events, and following the same general model, combining technical sessions, including plenary lectures by renowned scientists, with tutorials.

Adaptive Learning of Polynomial Networks

Adaptive Learning of Polynomial Networks PDF Author: Nikolay Nikolaev
Publisher: Springer Science & Business Media
ISBN: 0387312404
Category : Computers
Languages : en
Pages : 329

Get Book Here

Book Description
This book delivers theoretical and practical knowledge for developing algorithms that infer linear and non-linear multivariate models, providing a methodology for inductive learning of polynomial neural network models (PNN) from data. The text emphasizes an organized model identification process by which to discover models that generalize and predict well. The book further facilitates the discovery of polynomial models for time-series prediction.

Adaptive Control of Ill-Defined Systems

Adaptive Control of Ill-Defined Systems PDF Author: Oliver G. Selfridge
Publisher: Springer Science & Business Media
ISBN: 1468489410
Category : Business & Economics
Languages : en
Pages : 345

Get Book Here

Book Description
There are some types of complex systems that are built like clockwork, with well-defined parts that interact in well-defined ways, so that the action of the whole can be precisely analyzed and anticipated with accuracy and precision. Some systems are not themselves so well-defined, but they can be modeled in ways that are like trained pilots in well-built planes, or electrolyte balance in healthy humans. But there are many systems for which that is not true; and among them are many whose understanding and control we would value. For example, the model for the trained pilot above fails exactly where the pilot is being most human; that is, where he is exercising the highest levels of judgment, or where he is learning and adapting to new conditions. Again, sometimes the kinds of complexity do not lead to easily analyzable models at all; here we might include most economic systems, in all forms of societies. There are several factors that seem to contribute to systems being hard to model, understand, or control. The human participants may act in ways that are so variable or so rich or so interactive that the only adequate model of the system would be the entire system itself, so to speak. This is probably the case in true long term systems involving people learning and growing up in a changing society.