Multiscale, Nonlinear and Adaptive Approximation

Multiscale, Nonlinear and Adaptive Approximation PDF Author: Ronald DeVore
Publisher: Springer
ISBN: 9783642424571
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
. . . . . . . . . . . . . . . . . . . 7 7 Hyperbolic partial differential equations and conservation laws . . . 8 8 Engineering collaborations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 9 Thepresent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 10 Finalremarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Publications by Wolfgang Dahmen (as of summer 2009). . . . . . . . . . . . . . . 10 The way things were in multivariate splines: A personal view. . . . . . . . . . . 19 Carl de Boor 1 Tensor product spline interpolation. . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 Quasiinterpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 MultivariateB-splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4 Kergininterpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Multiscale, Nonlinear and Adaptive Approximation

Multiscale, Nonlinear and Adaptive Approximation PDF Author: Ronald DeVore
Publisher: Springer
ISBN: 9783642424571
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
. . . . . . . . . . . . . . . . . . . 7 7 Hyperbolic partial differential equations and conservation laws . . . 8 8 Engineering collaborations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 9 Thepresent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 10 Finalremarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Publications by Wolfgang Dahmen (as of summer 2009). . . . . . . . . . . . . . . 10 The way things were in multivariate splines: A personal view. . . . . . . . . . . 19 Carl de Boor 1 Tensor product spline interpolation. . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 Quasiinterpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 MultivariateB-splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4 Kergininterpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Adaptive Finite Element Methods for Differential Equations

Adaptive Finite Element Methods for Differential Equations PDF Author: Wolfgang Bangerth
Publisher: Birkhäuser
ISBN: 303487605X
Category : Mathematics
Languages : en
Pages : 216

Get Book Here

Book Description
These Lecture Notes have been compiled from the material presented by the second author in a lecture series ('Nachdiplomvorlesung') at the Department of Mathematics of the ETH Zurich during the summer term 2002. Concepts of 'self adaptivity' in the numerical solution of differential equations are discussed with emphasis on Galerkin finite element methods. The key issues are a posteriori er ror estimation and automatic mesh adaptation. Besides the traditional approach of energy-norm error control, a new duality-based technique, the Dual Weighted Residual method (or shortly D WR method) for goal-oriented error estimation is discussed in detail. This method aims at economical computation of arbitrary quantities of physical interest by properly adapting the computational mesh. This is typically required in the design cycles of technical applications. For example, the drag coefficient of a body immersed in a viscous flow is computed, then it is minimized by varying certain control parameters, and finally the stability of the resulting flow is investigated by solving an eigenvalue problem. 'Goal-oriented' adaptivity is designed to achieve these tasks with minimal cost. The basics of the DWR method and various of its applications are described in the following survey articles: R. Rannacher [114], Error control in finite element computations. In: Proc. of Summer School Error Control and Adaptivity in Scientific Computing (H. Bulgak and C. Zenger, eds), pp. 247-278. Kluwer Academic Publishers, 1998. M. Braack and R. Rannacher [42], Adaptive finite element methods for low Mach-number flows with chemical reactions.

Direct Methods in Control Problems

Direct Methods in Control Problems PDF Author: Peter Falb
Publisher: Springer Nature
ISBN: 0817647236
Category : Science
Languages : en
Pages : 312

Get Book Here

Book Description
Various general techniques have been developed for control and systems problems, many of which involve indirect methods. Because these indirect methods are not always effective, alternative approaches using direct methods are of particular interest and relevance given the advances of computing in recent years. The focus of this book, unique in the literature, is on direct methods, which are concerned with finding actual solutions to problems in control and systems, often algorithmic in nature. Throughout the work, deterministic and stochastic problems are examined from a unified perspective and with considerable rigor. Emphasis is placed on the theoretical basis of the methods and their potential utility in a broad range of control and systems problems. The book is an excellent reference for graduate students, researchers, applied mathematicians, and control engineers and may be used as a textbook for a graduate course or seminar on direct methods in control.

A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques

A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques PDF Author: Rüdiger Verführt
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 142

Get Book Here

Book Description


Automated Solution of Differential Equations by the Finite Element Method

Automated Solution of Differential Equations by the Finite Element Method PDF Author: Anders Logg
Publisher: Springer Science & Business Media
ISBN: 3642230997
Category : Computers
Languages : en
Pages : 723

Get Book Here

Book Description
This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available as free/open source software. The book begins with a special introductory tutorial for beginners. Following are chapters in Part I addressing fundamental aspects of the approach to automating the creation of finite element solvers. Chapters in Part II address the design and implementation of the FEnicS software. Chapters in Part III present the application of FEniCS to a wide range of applications, including fluid flow, solid mechanics, electromagnetics and geophysics.

Higher-Order Finite Element Methods

Higher-Order Finite Element Methods PDF Author: Pavel Solin
Publisher: CRC Press
ISBN: 0203488040
Category : Mathematics
Languages : en
Pages : 404

Get Book Here

Book Description
The finite element method has always been a mainstay for solving engineering problems numerically. The most recent developments in the field clearly indicate that its future lies in higher-order methods, particularly in higher-order hp-adaptive schemes. These techniques respond well to the increasing complexity of engineering simulations and

The Finite Element Method: Theory, Implementation, and Applications

The Finite Element Method: Theory, Implementation, and Applications PDF Author: Mats G. Larson
Publisher: Springer Science & Business Media
ISBN: 3642332870
Category : Computers
Languages : en
Pages : 403

Get Book Here

Book Description
This book gives an introduction to the finite element method as a general computational method for solving partial differential equations approximately. Our approach is mathematical in nature with a strong focus on the underlying mathematical principles, such as approximation properties of piecewise polynomial spaces, and variational formulations of partial differential equations, but with a minimum level of advanced mathematical machinery from functional analysis and partial differential equations. In principle, the material should be accessible to students with only knowledge of calculus of several variables, basic partial differential equations, and linear algebra, as the necessary concepts from more advanced analysis are introduced when needed. Throughout the text we emphasize implementation of the involved algorithms, and have therefore mixed mathematical theory with concrete computer code using the numerical software MATLAB is and its PDE-Toolbox. We have also had the ambition to cover some of the most important applications of finite elements and the basic finite element methods developed for those applications, including diffusion and transport phenomena, solid and fluid mechanics, and also electromagnetics.​

Constrained Optimization and Optimal Control for Partial Differential Equations

Constrained Optimization and Optimal Control for Partial Differential Equations PDF Author: Günter Leugering
Publisher: Springer Science & Business Media
ISBN: 3034801335
Category : Mathematics
Languages : en
Pages : 622

Get Book Here

Book Description
This special volume focuses on optimization and control of processes governed by partial differential equations. The contributors are mostly participants of the DFG-priority program 1253: Optimization with PDE-constraints which is active since 2006. The book is organized in sections which cover almost the entire spectrum of modern research in this emerging field. Indeed, even though the field of optimal control and optimization for PDE-constrained problems has undergone a dramatic increase of interest during the last four decades, a full theory for nonlinear problems is still lacking. The contributions of this volume, some of which have the character of survey articles, therefore, aim at creating and developing further new ideas for optimization, control and corresponding numerical simulations of systems of possibly coupled nonlinear partial differential equations. The research conducted within this unique network of groups in more than fifteen German universities focuses on novel methods of optimization, control and identification for problems in infinite-dimensional spaces, shape and topology problems, model reduction and adaptivity, discretization concepts and important applications. Besides the theoretical interest, the most prominent question is about the effectiveness of model-based numerical optimization methods for PDEs versus a black-box approach that uses existing codes, often heuristic-based, for optimization.

Adaptive Finite Elements in Linear and Nonlinear Solid and Structural Mechanics

Adaptive Finite Elements in Linear and Nonlinear Solid and Structural Mechanics PDF Author: Erwin Stein
Publisher: Springer Science & Business Media
ISBN: 3211380604
Category : Technology & Engineering
Languages : en
Pages : 368

Get Book Here

Book Description
This course with 6 lecturers intends to present a systematic survey of recent re search results of well-known scientists on error-controlled adaptive finite element methods in solid and structural mechanics with emphasis to problem-dependent concepts for adaptivity, error analysis as well as h- and p-adaptive refinement techniques including meshing and remeshing. Challenging applications are of equal importance, including elastic and elastoplastic deformations of solids, con tact problems and thin-walled structures. Some major topics should be pointed out, namely: (i) The growing importance of goal-oriented and local error estimates for quan tities of interest—in comparison with global error estimates—based on dual finite element solutions; (a) The importance of the p-version of the finite element method in conjunction with parameter-dependent hierarchical approximations of the mathematical model, for example in boundary layers of elastic plates; (Hi) The choice of problem-oriented error measures in suitable norms, consider ing residual, averaging and hierarchical error estimates in conjunction with the efficiency of the associated adaptive computations; (iv) The importance of implicit local postprocessing with enhanced test spaces in order to get constant-free, i. e. absolute-not only relative-discretizati- error estimates; (v) The coupling of error-controlled adaptive discretizations and the mathemat ical modeling in related subdomains, such as boundary layers. The main goals of adaptivity are reliability and efficiency, combined with in sight and access to controls which are independent of the applied discretization methods. By these efforts, new paradigms in Computational Mechanics should be realized, namely verifications and even validations of engineering models.

A Posteriori Error Estimation in Finite Element Analysis

A Posteriori Error Estimation in Finite Element Analysis PDF Author: Mark Ainsworth
Publisher: John Wiley & Sons
ISBN: 1118031075
Category : Mathematics
Languages : en
Pages : 266

Get Book Here

Book Description
An up-to-date, one-stop reference-complete with applications This volume presents the most up-to-date information available on aposteriori error estimation for finite element approximation inmechanics and mathematics. It emphasizes methods for ellipticboundary value problems and includes applications to incompressibleflow and nonlinear problems. Recent years have seen an explosion in the study of a posteriorierror estimators due to their remarkable influence on improvingboth accuracy and reliability in scientific computing. In an effortto provide an accessible source, the authors have sought to presentkey ideas and common principles on a sound mathematicalfooting. Topics covered in this timely reference include: * Implicit and explicit a posteriori error estimators * Recovery-based error estimators * Estimators, indicators, and hierarchic bases * The equilibrated residual method * Methodology for the comparison of estimators * Estimation of errors in quantities of interest A Posteriori Error Estimation in Finite Element Analysis is a lucidand convenient resource for researchers in almost any field offinite element methods, and for applied mathematicians andengineers who have an interest in error estimation and/or finiteelements.