Active Disturbance Rejection Control of Dynamic Systems

Active Disturbance Rejection Control of Dynamic Systems PDF Author: Hebertt Sira-Ramirez
Publisher: Butterworth-Heinemann
ISBN: 9780128498682
Category : Science
Languages : en
Pages : 0

Get Book Here

Book Description
Active Disturbance Rejection Control of Dynamic Systems: A Flatness Based Approach describes the linear control of uncertain nonlinear systems. The net result is a practical controller design that is simple and surprisingly robust, one that also guarantees convergence to small neighborhoods of desired equilibria or tracking errors that are as close to zero as desired. This methodology differs from current robust feedback controllers characterized by either complex matrix manipulations, complex parameter adaptation schemes and, in other cases, induced high frequency noises through the classical chattering phenomenon. The approach contains many of the cornerstones, or philosophical features, of Model Free Control and ADRC, while exploiting flatness and GPI control in an efficient manner for linear, nonlinear, mono-variable and multivariable systems, including those exhibiting inputs delays. The book contains successful experimental laboratory case studies of diverse engineering problems, especially those relating to mechanical, electro-mechanical, robotics, mobile robotics and power electronics systems.

Active Disturbance Rejection Control of Dynamic Systems

Active Disturbance Rejection Control of Dynamic Systems PDF Author: Hebertt Sira-Ramirez
Publisher: Butterworth-Heinemann
ISBN: 9780128498682
Category : Science
Languages : en
Pages : 0

Get Book Here

Book Description
Active Disturbance Rejection Control of Dynamic Systems: A Flatness Based Approach describes the linear control of uncertain nonlinear systems. The net result is a practical controller design that is simple and surprisingly robust, one that also guarantees convergence to small neighborhoods of desired equilibria or tracking errors that are as close to zero as desired. This methodology differs from current robust feedback controllers characterized by either complex matrix manipulations, complex parameter adaptation schemes and, in other cases, induced high frequency noises through the classical chattering phenomenon. The approach contains many of the cornerstones, or philosophical features, of Model Free Control and ADRC, while exploiting flatness and GPI control in an efficient manner for linear, nonlinear, mono-variable and multivariable systems, including those exhibiting inputs delays. The book contains successful experimental laboratory case studies of diverse engineering problems, especially those relating to mechanical, electro-mechanical, robotics, mobile robotics and power electronics systems.

Active Disturbance Rejection Control for Nonlinear Systems

Active Disturbance Rejection Control for Nonlinear Systems PDF Author: Bao-Zhu Guo
Publisher: John Wiley & Sons
ISBN: 1119239923
Category : Science
Languages : en
Pages : 364

Get Book Here

Book Description
A concise, in-depth introduction to active disturbance rejection control theory for nonlinear systems, with numerical simulations and clearly worked out equations Provides the fundamental, theoretical foundation for applications of active disturbance rejection control Features numerical simulations and clearly worked out equations Highlights the advantages of active disturbance rejection control, including small overshooting, fast convergence, and energy savings

Active Disturbance Rejection Control of Dynamic Systems

Active Disturbance Rejection Control of Dynamic Systems PDF Author: Hebertt Sira-Ramirez
Publisher: Butterworth-Heinemann
ISBN: 0128118954
Category : Technology & Engineering
Languages : en
Pages : 360

Get Book Here

Book Description
Active Disturbance Rejection Control of Dynamic Systems: A Flatness Based Approach describes the linear control of uncertain nonlinear systems. The net result is a practical controller design that is simple and surprisingly robust, one that also guarantees convergence to small neighborhoods of desired equilibria or tracking errors that are as close to zero as desired. This methodology differs from current robust feedback controllers characterized by either complex matrix manipulations, complex parameter adaptation schemes and, in other cases, induced high frequency noises through the classical chattering phenomenon. The approach contains many of the cornerstones, or philosophical features, of Model Free Control and ADRC, while exploiting flatness and GPI control in an efficient manner for linear, nonlinear, mono-variable and multivariable systems, including those exhibiting inputs delays. The book contains successful experimental laboratory case studies of diverse engineering problems, especially those relating to mechanical, electro-mechanical, robotics, mobile robotics and power electronics systems. - Provides an alternative way to solve disturbance rejection problems and robust control problem beyond the existing approaches based on matrix algebra and state observers - Generalizes the widely studied Extended State Observer to a class of observers called Generalized Proportional Integral Observers (GPI Observers) - Contains successful experimental laboratory case studies

Disturbance Observer-Based Control

Disturbance Observer-Based Control PDF Author: Shihua Li
Publisher: CRC Press
ISBN: 1466515805
Category : Computers
Languages : en
Pages : 342

Get Book Here

Book Description
Due to its abilities to compensate disturbances and uncertainties, disturbance observer based control (DOBC) is regarded as one of the most promising approaches for disturbance-attenuation. One of the first books on DOBC, Disturbance Observer Based Control: Methods and Applications presents novel theory results as well as best practices for applica

Event-Triggered Active Disturbance Rejection Control

Event-Triggered Active Disturbance Rejection Control PDF Author: Dawei Shi
Publisher: Springer Nature
ISBN: 981160293X
Category : Technology & Engineering
Languages : en
Pages : 235

Get Book Here

Book Description
The past few years have seen the attention and rapid developments in event-triggered sampled-data systems, in which the effect of event-triggered sensor measurements and controller updates is explored in controller analysis and design. This book offers the first systematic treatment of event-triggered sampled-data control system design using active disturbance rejection control (ADRC), an effective approach that is popular in both theoretic research and industrial applications. Extensive application examples with numerous illustrations are included to show how the event-triggered ADRC with theoretic performance guarantees can be implemented in engineering systems and how the performance can be actually achieved. For theoretic researchers and graduate students, the presented results provide new directions in theoretic research on event-triggered sampled-data systems; for control practitioners, the book offers an effective approach to achieving satisfactory performance with limited sampling rates.

Active Disturbance Rejection Control

Active Disturbance Rejection Control PDF Author: Gernot Herbst
Publisher: Springer Nature
ISBN: 3031726871
Category :
Languages : en
Pages : 217

Get Book Here

Book Description


Advanced, Contemporary Control

Advanced, Contemporary Control PDF Author: Andrzej Bartoszewicz
Publisher: Springer Nature
ISBN: 3030509362
Category : Technology & Engineering
Languages : en
Pages : 1560

Get Book Here

Book Description
This book presents the proceedings of the 20th Polish Control Conference. A triennial event that was first held in 1958, the conference successfully combines its long tradition with a modern approach to shed light on problems in control engineering, automation, robotics and a wide range of applications in these disciplines. The book presents new theoretical results concerning the steering of dynamical systems, as well as industrial case studies and worked solutions to real-world problems in contemporary engineering. It particularly focuses on the modelling, identification, analysis and design of automation systems; however, it also addresses the evaluation of their performance, efficiency and reliability. Other topics include fault-tolerant control in robotics, automated manufacturing, mechatronics and industrial systems. Moreover, it discusses data processing and transfer issues, covering a variety of methodologies, including model predictive, robust and adaptive techniques, as well as algebraic and geometric methods, and fractional order calculus approaches. The book also examines essential application areas, such as transportation and autonomous intelligent vehicle systems, robotic arms, mobile manipulators, cyber-physical systems, electric drives and both surface and underwater marine vessels. Lastly, it explores biological and medical applications of the control-theory-inspired methods.

Spacecraft Dynamics and Control

Spacecraft Dynamics and Control PDF Author: Enrico Canuto
Publisher: Butterworth-Heinemann
ISBN: 0081017952
Category : Technology & Engineering
Languages : en
Pages : 792

Get Book Here

Book Description
Spacecraft Dynamics and Control: The Embedded Model Control Approach provides a uniform and systematic way of approaching space engineering control problems from the standpoint of model-based control, using state-space equations as the key paradigm for simulation, design and implementation. The book introduces the Embedded Model Control methodology for the design and implementation of attitude and orbit control systems. The logic architecture is organized around the embedded model of the spacecraft and its surrounding environment. The model is compelled to include disturbance dynamics as a repository of the uncertainty that the control law must reject to meet attitude and orbit requirements within the uncertainty class. The source of the real-time uncertainty estimation/prediction is the model error signal, as it encodes the residual discrepancies between spacecraft measurements and model output. The embedded model and the uncertainty estimation feedback (noise estimator in the book) constitute the state predictor feeding the control law. Asymptotic pole placement (exploiting the asymptotes of closed-loop transfer functions) is the way to design and tune feedback loops around the embedded model (state predictor, control law, reference generator). The design versus the uncertainty class is driven by analytic stability and performance inequalities. The method is applied to several attitude and orbit control problems. - The book begins with an extensive introduction to attitude geometry and algebra and ends with the core themes: state-space dynamics and Embedded Model Control - Fundamentals of orbit, attitude and environment dynamics are treated giving emphasis to state-space formulation, disturbance dynamics, state feedback and prediction, closed-loop stability - Sensors and actuators are treated giving emphasis to their dynamics and modelling of measurement errors. Numerical tables are included and their data employed for numerical simulations - Orbit and attitude control problems of the European GOCE mission are the inspiration of numerical exercises and simulations - The suite of the attitude control modes of a GOCE-like mission is designed and simulated around the so-called mission state predictor - Solved and unsolved exercises are included within the text - and not separated at the end of chapters - for better understanding, training and application - Simulated results and their graphical plots are developed through MATLAB/Simulink code

Advances in Automation and Robotics Research

Advances in Automation and Robotics Research PDF Author: Héctor A. Moreno
Publisher: Springer Nature
ISBN: 3030900339
Category : Technology & Engineering
Languages : en
Pages : 290

Get Book Here

Book Description
This book gathers the proceedings of the 3rd Latin American Congress on Automation and Robotics, held at Monterrey, Mexico, on November 17–19, 2021. This book presents recent advances in the modeling, design, control, and development of autonomous and robotic systems and explores current exciting applications and future challenges of these technologies. The scope of this book covers a wide range of research fields associated with automation and robotics encountered within engineering, scientific research, and practice. These topics are related to autonomous systems, industrial automation and robotics, modelling and systems identification, simulation procedures and experimental validations, control theory, artificial intelligence, computer vision, sensing and sensor fusion, multi-robot and multi-agent systems, field and service robotics, human robot interaction and interfaces, modelling of robotic systems, and the design of new robotic platforms.

Feedback Systems

Feedback Systems PDF Author: Karl Johan Åström
Publisher: Princeton University Press
ISBN: 069121347X
Category : Technology & Engineering
Languages : en
Pages : 523

Get Book Here

Book Description
The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory