Accessible Categories: The Foundations of Categorical Model Theory

Accessible Categories: The Foundations of Categorical Model Theory PDF Author: Mihály Makkai
Publisher: American Mathematical Soc.
ISBN: 082185111X
Category : Mathematics
Languages : en
Pages : 186

Get Book Here

Book Description
Intended for category theorists and logicians familiar with basic category theory, this book focuses on categorical model theory, which is concerned with the categories of models of infinitary first order theories, called accessible categories. The starting point is a characterization of accessible categories in terms of concepts familiar from Gabriel-Ulmer's theory of locally presentable categories. Most of the work centers on various constructions (such as weighted bilimits and lax colimits), which, when performed on accessible categories, yield new accessible categories. These constructions are necessarily 2-categorical in nature; the authors cover some aspects of 2-category theory, in addition to some basic model theory, and some set theory. One of the main tools used in this study is the theory of mixed sketches, which the authors specialize to give concrete results about model theory. Many examples illustrate the extent of applicability of these concepts. In particular, some applications to topos theory are given. Perhaps the book's most significant contribution is the way it sets model theory in categorical terms, opening the door for further work along these lines. Requiring a basic background in category theory, this book will provide readers with an understanding of model theory in categorical terms, familiarity with 2-categorical methods, and a useful tool for studying toposes and other categories.

Accessible Categories: The Foundations of Categorical Model Theory

Accessible Categories: The Foundations of Categorical Model Theory PDF Author: Mihály Makkai
Publisher: American Mathematical Soc.
ISBN: 082185111X
Category : Mathematics
Languages : en
Pages : 186

Get Book Here

Book Description
Intended for category theorists and logicians familiar with basic category theory, this book focuses on categorical model theory, which is concerned with the categories of models of infinitary first order theories, called accessible categories. The starting point is a characterization of accessible categories in terms of concepts familiar from Gabriel-Ulmer's theory of locally presentable categories. Most of the work centers on various constructions (such as weighted bilimits and lax colimits), which, when performed on accessible categories, yield new accessible categories. These constructions are necessarily 2-categorical in nature; the authors cover some aspects of 2-category theory, in addition to some basic model theory, and some set theory. One of the main tools used in this study is the theory of mixed sketches, which the authors specialize to give concrete results about model theory. Many examples illustrate the extent of applicability of these concepts. In particular, some applications to topos theory are given. Perhaps the book's most significant contribution is the way it sets model theory in categorical terms, opening the door for further work along these lines. Requiring a basic background in category theory, this book will provide readers with an understanding of model theory in categorical terms, familiarity with 2-categorical methods, and a useful tool for studying toposes and other categories.

Categorical Foundations

Categorical Foundations PDF Author: Maria Cristina Pedicchio
Publisher: Cambridge University Press
ISBN: 9780521834148
Category : Mathematics
Languages : en
Pages : 452

Get Book Here

Book Description
Publisher Description

Categories and Sheaves

Categories and Sheaves PDF Author: Masaki Kashiwara
Publisher: Springer Science & Business Media
ISBN: 3540279490
Category : Mathematics
Languages : en
Pages : 496

Get Book Here

Book Description
Categories and sheaves appear almost frequently in contemporary advanced mathematics. This book covers categories, homological algebra and sheaves in a systematic manner starting from scratch and continuing with full proofs to the most recent results in the literature, and sometimes beyond. The authors present the general theory of categories and functors, emphasizing inductive and projective limits, tensor categories, representable functors, ind-objects and localization.

Locally Presentable and Accessible Categories

Locally Presentable and Accessible Categories PDF Author: Jiri Adamek (ing)
Publisher: Cambridge University Press
ISBN: 0521422612
Category : Mathematics
Languages : en
Pages : 334

Get Book Here

Book Description
First the concepts of [lambda]-presentable objects, locally [lambda]-presentable categories, and [lambda]-accessible categories are discussed in detail. The authors go on to prove that Freyd's essentially algebraic categories are precisely the locally presentable categories. In the final chapter they treat some advanced topics in model theory. For researchers in category theory, algebra, computer science, and model theory, this book will be a necessary purchase.

From a Geometrical Point of View

From a Geometrical Point of View PDF Author: Jean-Pierre Marquis
Publisher: Springer Science & Business Media
ISBN: 1402093845
Category : Science
Languages : en
Pages : 316

Get Book Here

Book Description
From a Geometrical Point of View explores historical and philosophical aspects of category theory, trying therewith to expose its significance in the mathematical landscape. The main thesis is that Klein’s Erlangen program in geometry is in fact a particular instance of a general and broad phenomenon revealed by category theory. The volume starts with Eilenberg and Mac Lane’s work in the early 1940’s and follows the major developments of the theory from this perspective. Particular attention is paid to the philosophical elements involved in this development. The book ends with a presentation of categorical logic, some of its results and its significance in the foundations of mathematics. From a Geometrical Point of View aims to provide its readers with a conceptual perspective on category theory and categorical logic, in order to gain insight into their role and nature in contemporary mathematics. It should be of interest to mathematicians, logicians, philosophers of mathematics and science in general, historians of contemporary mathematics, physicists and computer scientists.

Mathematical Aspects of Classical Field Theory

Mathematical Aspects of Classical Field Theory PDF Author: Mark J. Gotay
Publisher: American Mathematical Soc.
ISBN: 0821851446
Category : Science
Languages : en
Pages : 658

Get Book Here

Book Description
Classical field theory has undergone a renaissance in recent years. Symplectic techniques have yielded deep insights into its foundations, as has an improved understanding of the variational calculus. Further impetus for the study of classical fields has come from other areas, such as integrable systems, Poisson geometry, global analysis, and quantum theory. This book contains the proceedings of the AMS-IMS-SIAM Joint Summer Research Conference on Mathematical Aspects of Classical Field Theory, held in July 1991 at the University of Washington at Seattle. The conference brought together researchers in many of the main areas of classical field theory to present the latest ideas and results. The volume contains thirty refereed papers, both survey and research articles, and is designed to reflect the state of the art as well as chart the future course of the subject. The topics fall into four major categories: global analysis and relativity (cosmic censorship, initial value problem, quantum gravity), geometric methods (symplectic and Poisson structures, momentum mappings, Dirac constraint theory), BRST theory, and the calculus of variations (the variational bicomplex, higher order theories). Also included are related topics with a ``classical basis'', such as geometric quantization, integrable systems, symmetries, deformation theory, and geometric mechanics.

A Tribute to Emil Grosswald: Number Theory and Related Analysis

A Tribute to Emil Grosswald: Number Theory and Related Analysis PDF Author: Marvin Isadore Knopp
Publisher: American Mathematical Soc.
ISBN: 0821851551
Category : Mathematics
Languages : en
Pages : 624

Get Book Here

Book Description
Emil Grosswald was a mathematician of great accomplishment and remarkable breadth of vision. This volume pays tribute to the span of his mathematical interests, which is reflected in the wide range of papers collected here. With contributions by leading contemporary researchers in number theory, modular functions, combinatorics, and related analysis, this book will interest graduate students and specialists in these fields. The high quality of the articles and their close connection to current research trends make this volume a must for any mathematics library.

Algebraic $K$-Theory, Commutative Algebra, and Algebraic Geometry

Algebraic $K$-Theory, Commutative Algebra, and Algebraic Geometry PDF Author: R. Keith Dennis
Publisher: American Mathematical Soc.
ISBN: 0821851306
Category : Mathematics
Languages : en
Pages : 250

Get Book Here

Book Description
In the mid-1960's, several Italian mathematicians began to study the connections between classical arguments in commutative algebra and algebraic geometry, and the contemporaneous development of algebraic K-theory in the US. These connections were exemplified by the work of Andreotti-Bombieri, Salmon, and Traverso on seminormality, and by Bass-Murthy on the Picard groups of polynomial rings. Interactions proceeded far beyond this initial point to encompass Chow groups of singular varieties, complete intersections, and applications of K-theory to arithmetic and real geometry. This volume contains the proceedings from a US-Italy Joint Summer Seminar, which focused on this circle of ideas. The conference, held in June 1989 in Santa Margherita Ligure, Italy, was supported jointly by the Consiglio Nazionale delle Ricerche and the National Science Foundation. The book contains contributions from some of the leading experts in this area.

Selfadjoint and Nonselfadjoint Operator Algebras and Operator Theory

Selfadjoint and Nonselfadjoint Operator Algebras and Operator Theory PDF Author: Robert S. Doran
Publisher: American Mathematical Soc.
ISBN: 0821851276
Category : Mathematics
Languages : en
Pages : 242

Get Book Here

Book Description
This book contains papers presented at the NSF/CBMS Regional Conference on Coordinates in Operator Algebras, held at Texas Christian University in Fort Worth in May 1990. During the conference, in addition to a series of ten lectures by Paul S Muhly (which will be published in a CBMS Regional Conference Series volume), there were twenty-eight lectures delivered by conference participants on a broad range of topics of current interest in operator algebras and operator theory. This volume contains slightly expanded versions of most of those lectures. Participants were encouraged to bring open problems to the conference, and, as a result, there are over one hundred problems and questions scattered throughout this volume. Readers will appreciate this book for the overview it provides of current topics and methods of operator algebras and operator theory.

Philosophy of Mathematics Today

Philosophy of Mathematics Today PDF Author: E. Agazzi
Publisher: Springer Science & Business Media
ISBN: 9401156905
Category : Mathematics
Languages : en
Pages : 376

Get Book Here

Book Description
Mathematics is often considered as a body of knowledge that is essen tially independent of linguistic formulations, in the sense that, once the content of this knowledge has been grasped, there remains only the problem of professional ability, that of clearly formulating and correctly proving it. However, the question is not so simple, and P. Weingartner's paper (Language and Coding-Dependency of Results in Logic and Mathe matics) deals with some results in logic and mathematics which reveal that certain notions are in general not invariant with respect to different choices of language and of coding processes. Five example are given: 1) The validity of axioms and rules of classical propositional logic depend on the interpretation of sentential variables; 2) The language dependency of verisimilitude; 3) The proof of the weak and strong anti inductivist theorems in Popper's theory of inductive support is not invariant with respect to limitative criteria put on classical logic; 4) The language-dependency of the concept of provability; 5) The language dependency of the existence of ungrounded and paradoxical sentences (in the sense of Kripke). The requirements of logical rigour and consistency are not the only criteria for the acceptance and appreciation of mathematical proposi tions and theories.