Author: Alex Porter
Publisher: Elsevier
ISBN: 0080488072
Category : Technology & Engineering
Languages : en
Pages : 257
Book Description
Accelerated Testing and Validation Methods is a cross-disciplinary guide that describes testing and validation tools and techniques throughout the product development process. Alex Porter not only focuses on what information is needed but also on what tools can produce the information in a timely manner. From the information provided, engineers and managers can determine what data is needed from a test and validation program and then how to select the best, most effective methods for obtaining the data.This book integrates testing and validation methods with a business perspective so readers can understand when, where, and how such methods can be economically justified. Testing and validation is about generating key information at the correct time so that sound business and engineering decisions can be made. Rather than simply describing various testing and validation techniques, the author offers readers guidance on how to select the best tools for a particular need, explains the appropriateness of different techniques to various situations and shows how to deploy them to ensure the desired information is accurately gathered. - Emphasizes developing a strategy for testing and validation - Teaches how to design a testing and validation program that deliver information in a timely and cost-effective manner
Accelerated Testing and Validation
Author: Alex Porter
Publisher: Elsevier
ISBN: 0080488072
Category : Technology & Engineering
Languages : en
Pages : 257
Book Description
Accelerated Testing and Validation Methods is a cross-disciplinary guide that describes testing and validation tools and techniques throughout the product development process. Alex Porter not only focuses on what information is needed but also on what tools can produce the information in a timely manner. From the information provided, engineers and managers can determine what data is needed from a test and validation program and then how to select the best, most effective methods for obtaining the data.This book integrates testing and validation methods with a business perspective so readers can understand when, where, and how such methods can be economically justified. Testing and validation is about generating key information at the correct time so that sound business and engineering decisions can be made. Rather than simply describing various testing and validation techniques, the author offers readers guidance on how to select the best tools for a particular need, explains the appropriateness of different techniques to various situations and shows how to deploy them to ensure the desired information is accurately gathered. - Emphasizes developing a strategy for testing and validation - Teaches how to design a testing and validation program that deliver information in a timely and cost-effective manner
Publisher: Elsevier
ISBN: 0080488072
Category : Technology & Engineering
Languages : en
Pages : 257
Book Description
Accelerated Testing and Validation Methods is a cross-disciplinary guide that describes testing and validation tools and techniques throughout the product development process. Alex Porter not only focuses on what information is needed but also on what tools can produce the information in a timely manner. From the information provided, engineers and managers can determine what data is needed from a test and validation program and then how to select the best, most effective methods for obtaining the data.This book integrates testing and validation methods with a business perspective so readers can understand when, where, and how such methods can be economically justified. Testing and validation is about generating key information at the correct time so that sound business and engineering decisions can be made. Rather than simply describing various testing and validation techniques, the author offers readers guidance on how to select the best tools for a particular need, explains the appropriateness of different techniques to various situations and shows how to deploy them to ensure the desired information is accurately gathered. - Emphasizes developing a strategy for testing and validation - Teaches how to design a testing and validation program that deliver information in a timely and cost-effective manner
Verification, Validation, and Testing of Engineered Systems
Author: Avner Engel
Publisher: John Wiley & Sons
ISBN: 1118029313
Category : Technology & Engineering
Languages : en
Pages : 723
Book Description
Systems' Verification Validation and Testing (VVT) are carried out throughout systems' lifetimes. Notably, quality-cost expended on performing VVT activities and correcting system defects consumes about half of the overall engineering cost. Verification, Validation and Testing of Engineered Systems provides a comprehensive compendium of VVT activities and corresponding VVT methods for implementation throughout the entire lifecycle of an engineered system. In addition, the book strives to alleviate the fundamental testing conundrum, namely: What should be tested? How should one test? When should one test? And, when should one stop testing? In other words, how should one select a VVT strategy and how it be optimized? The book is organized in three parts: The first part provides introductory material about systems and VVT concepts. This part presents a comprehensive explanation of the role of VVT in the process of engineered systems (Chapter-1). The second part describes 40 systems' development VVT activities (Chapter-2) and 27 systems' post-development activities (Chapter-3). Corresponding to these activities, this part also describes 17 non-testing systems' VVT methods (Chapter-4) and 33 testing systems' methods (Chapter-5). The third part of the book describes ways to model systems' quality cost, time and risk (Chapter-6), as well as ways to acquire quality data and optimize the VVT strategy in the face of funding, time and other resource limitations as well as different business objectives (Chapter-7). Finally, this part describes the methodology used to validate the quality model along with a case study describing a system's quality improvements (Chapter-8). Fundamentally, this book is written with two categories of audience in mind. The first category is composed of VVT practitioners, including Systems, Test, Production and Maintenance engineers as well as first and second line managers. The second category is composed of students and faculties of Systems, Electrical, Aerospace, Mechanical and Industrial Engineering schools. This book may be fully covered in two to three graduate level semesters; although parts of the book may be covered in one semester. University instructors will most likely use the book to provide engineering students with knowledge about VVT, as well as to give students an introduction to formal modeling and optimization of VVT strategy.
Publisher: John Wiley & Sons
ISBN: 1118029313
Category : Technology & Engineering
Languages : en
Pages : 723
Book Description
Systems' Verification Validation and Testing (VVT) are carried out throughout systems' lifetimes. Notably, quality-cost expended on performing VVT activities and correcting system defects consumes about half of the overall engineering cost. Verification, Validation and Testing of Engineered Systems provides a comprehensive compendium of VVT activities and corresponding VVT methods for implementation throughout the entire lifecycle of an engineered system. In addition, the book strives to alleviate the fundamental testing conundrum, namely: What should be tested? How should one test? When should one test? And, when should one stop testing? In other words, how should one select a VVT strategy and how it be optimized? The book is organized in three parts: The first part provides introductory material about systems and VVT concepts. This part presents a comprehensive explanation of the role of VVT in the process of engineered systems (Chapter-1). The second part describes 40 systems' development VVT activities (Chapter-2) and 27 systems' post-development activities (Chapter-3). Corresponding to these activities, this part also describes 17 non-testing systems' VVT methods (Chapter-4) and 33 testing systems' methods (Chapter-5). The third part of the book describes ways to model systems' quality cost, time and risk (Chapter-6), as well as ways to acquire quality data and optimize the VVT strategy in the face of funding, time and other resource limitations as well as different business objectives (Chapter-7). Finally, this part describes the methodology used to validate the quality model along with a case study describing a system's quality improvements (Chapter-8). Fundamentally, this book is written with two categories of audience in mind. The first category is composed of VVT practitioners, including Systems, Test, Production and Maintenance engineers as well as first and second line managers. The second category is composed of students and faculties of Systems, Electrical, Aerospace, Mechanical and Industrial Engineering schools. This book may be fully covered in two to three graduate level semesters; although parts of the book may be covered in one semester. University instructors will most likely use the book to provide engineering students with knowledge about VVT, as well as to give students an introduction to formal modeling and optimization of VVT strategy.
Reliability Growth
Author: Panel on Reliability Growth Methods for Defense Systems
Publisher: National Academy Press
ISBN: 9780309314749
Category : Technology & Engineering
Languages : en
Pages : 235
Book Description
A high percentage of defense systems fail to meet their reliability requirements. This is a serious problem for the U.S. Department of Defense (DOD), as well as the nation. Those systems are not only less likely to successfully carry out their intended missions, but they also could endanger the lives of the operators. Furthermore, reliability failures discovered after deployment can result in costly and strategic delays and the need for expensive redesign, which often limits the tactical situations in which the system can be used. Finally, systems that fail to meet their reliability requirements are much more likely to need additional scheduled and unscheduled maintenance and to need more spare parts and possibly replacement systems, all of which can substantially increase the life-cycle costs of a system. Beginning in 2008, DOD undertook a concerted effort to raise the priority of reliability through greater use of design for reliability techniques, reliability growth testing, and formal reliability growth modeling, by both the contractors and DOD units. To this end, handbooks, guidances, and formal memoranda were revised or newly issued to reduce the frequency of reliability deficiencies for defense systems in operational testing and the effects of those deficiencies. "Reliability Growth" evaluates these recent changes and, more generally, assesses how current DOD principles and practices could be modified to increase the likelihood that defense systems will satisfy their reliability requirements. This report examines changes to the reliability requirements for proposed systems; defines modern design and testing for reliability; discusses the contractor's role in reliability testing; and summarizes the current state of formal reliability growth modeling. The recommendations of "Reliability Growth" will improve the reliability of defense systems and protect the health of the valuable personnel who operate them.
Publisher: National Academy Press
ISBN: 9780309314749
Category : Technology & Engineering
Languages : en
Pages : 235
Book Description
A high percentage of defense systems fail to meet their reliability requirements. This is a serious problem for the U.S. Department of Defense (DOD), as well as the nation. Those systems are not only less likely to successfully carry out their intended missions, but they also could endanger the lives of the operators. Furthermore, reliability failures discovered after deployment can result in costly and strategic delays and the need for expensive redesign, which often limits the tactical situations in which the system can be used. Finally, systems that fail to meet their reliability requirements are much more likely to need additional scheduled and unscheduled maintenance and to need more spare parts and possibly replacement systems, all of which can substantially increase the life-cycle costs of a system. Beginning in 2008, DOD undertook a concerted effort to raise the priority of reliability through greater use of design for reliability techniques, reliability growth testing, and formal reliability growth modeling, by both the contractors and DOD units. To this end, handbooks, guidances, and formal memoranda were revised or newly issued to reduce the frequency of reliability deficiencies for defense systems in operational testing and the effects of those deficiencies. "Reliability Growth" evaluates these recent changes and, more generally, assesses how current DOD principles and practices could be modified to increase the likelihood that defense systems will satisfy their reliability requirements. This report examines changes to the reliability requirements for proposed systems; defines modern design and testing for reliability; discusses the contractor's role in reliability testing; and summarizes the current state of formal reliability growth modeling. The recommendations of "Reliability Growth" will improve the reliability of defense systems and protect the health of the valuable personnel who operate them.
SAE International's Dictionary of Testing, Verification, and Validation
Author: Jon M. Quigley
Publisher: SAE International
ISBN: 1468605917
Category : Technology & Engineering
Languages : en
Pages : 463
Book Description
Created to elevate expertise in testing, verification, and validation with industry-specific terminology, readers are empowered to navigate the complex world of quality assurance. From foundational concepts to advanced principles, each entry provides clarity and depth, ensuring the reader becomes well-versed in the language of precision. This dictionary is an indispensable companion for both professionals and students seeking to unravel the nuances of testing methodologies, verification techniques, and validation processes. Readers will be equipped with the tools to communicate effectively, make informed decisions, and excel in projects. In addition, references to SAE Standards are included to direct the read to additional information beyond a practical definition. (ISBN 9781468605907, ISBN 9781468605914, ISBN 9781468605921, DOI 10.4271/9781468605914)
Publisher: SAE International
ISBN: 1468605917
Category : Technology & Engineering
Languages : en
Pages : 463
Book Description
Created to elevate expertise in testing, verification, and validation with industry-specific terminology, readers are empowered to navigate the complex world of quality assurance. From foundational concepts to advanced principles, each entry provides clarity and depth, ensuring the reader becomes well-versed in the language of precision. This dictionary is an indispensable companion for both professionals and students seeking to unravel the nuances of testing methodologies, verification techniques, and validation processes. Readers will be equipped with the tools to communicate effectively, make informed decisions, and excel in projects. In addition, references to SAE Standards are included to direct the read to additional information beyond a practical definition. (ISBN 9781468605907, ISBN 9781468605914, ISBN 9781468605921, DOI 10.4271/9781468605914)
Accelerated testing and validation : testing, engineering, and management tools for lean development
Author: Alex Porter
Publisher:
ISBN:
Category : Accelerated life testing
Languages : en
Pages : 242
Book Description
Publisher:
ISBN:
Category : Accelerated life testing
Languages : en
Pages : 242
Book Description
Robustness Development and Reliability Growth
Author: John P. King
Publisher: Pearson Education
ISBN: 0137079222
Category : Technology & Engineering
Languages : en
Pages : 934
Book Description
This book integrates key tools and processes into a comprehensive program for developing more robust and reliable technology-based products. Drawing on their extensive product development experience, the authors present a complete process for ensuring product performance throughout the entire lifecycle, from understanding customers’ needs through manufacturing and post-launch support. The authors begin by presenting broad insights and high-level strategies for improving product quality. Next, they demonstrate how to implement robustness and reliability strategies that complement existing governance and decision processes. A section on tools and methods shows how to institutionalize best practices and apply them consistently. Finally, they tie strategies, decisions, and methods together through a case study project. Product developers will learn how to Understand critical drivers of value in technology products, including reliability and durability Implement a process model and roadmap for improving reliability and robustness Increase robustness early in development, leading to shorter cycle times in later phases Improve the stability of production performance under stress conditions Assess both organizational and process capabilities for delivering robust and reliable products Understand and manage customer-driven requirements Use tools including descriptive and inferential statistics and DOE-based empirical models Managers will understand expectations for Design concepts supported by rigorous analyses of alternatives Products and processes delivering higher value to customers Products with higher reliability and longer useful lives Product processes with lower costs and higher capabilities Development projects having shorter, more predictable cycle times Readers are introduced to many thought leaders whose writings can be sources of further learning. This book is a valuable resource for anyone responsible for delivering reliable, profitable technology products, including general managers, program managers, engineers, scientists, and reliability and quality professionals.
Publisher: Pearson Education
ISBN: 0137079222
Category : Technology & Engineering
Languages : en
Pages : 934
Book Description
This book integrates key tools and processes into a comprehensive program for developing more robust and reliable technology-based products. Drawing on their extensive product development experience, the authors present a complete process for ensuring product performance throughout the entire lifecycle, from understanding customers’ needs through manufacturing and post-launch support. The authors begin by presenting broad insights and high-level strategies for improving product quality. Next, they demonstrate how to implement robustness and reliability strategies that complement existing governance and decision processes. A section on tools and methods shows how to institutionalize best practices and apply them consistently. Finally, they tie strategies, decisions, and methods together through a case study project. Product developers will learn how to Understand critical drivers of value in technology products, including reliability and durability Implement a process model and roadmap for improving reliability and robustness Increase robustness early in development, leading to shorter cycle times in later phases Improve the stability of production performance under stress conditions Assess both organizational and process capabilities for delivering robust and reliable products Understand and manage customer-driven requirements Use tools including descriptive and inferential statistics and DOE-based empirical models Managers will understand expectations for Design concepts supported by rigorous analyses of alternatives Products and processes delivering higher value to customers Products with higher reliability and longer useful lives Product processes with lower costs and higher capabilities Development projects having shorter, more predictable cycle times Readers are introduced to many thought leaders whose writings can be sources of further learning. This book is a valuable resource for anyone responsible for delivering reliable, profitable technology products, including general managers, program managers, engineers, scientists, and reliability and quality professionals.
Automotive Electronics Reliability
Author: Ronald K Jurgen
Publisher: SAE International
ISBN: 0768096669
Category : Technology & Engineering
Languages : en
Pages : 377
Book Description
Vehicle reliability problems continue to be the news because of major vehicle recalls from several manufacturers. This book includes 40 SAE technical papers, published from 2007 through 2010, that describe the latest research on automotive electronics reliability technology. This book will help engineers and researchers focus on the design strategies being used to minimize electronics reliability problems, and how to test and verify those strategies. After an overview of durability, risk assessment, and failure mechanisms, this book focuses on state-of-the-art techniques for reliability-based design, and reliability testing and verification. Topics include: powertrain control monitoring distributed automotive embedded systems model-based design x-by-wire systems battery durability design verification fault tree analysis The book also includes editor Ronald K. Jurgen’s introduction ,“Striving for Maximum Reliability in a Highly Complex Electronic Environment”, and a concluding section on the future of electronics reliability, including networking technology, domain control units, the use of AUTOSAR, and embedded software.
Publisher: SAE International
ISBN: 0768096669
Category : Technology & Engineering
Languages : en
Pages : 377
Book Description
Vehicle reliability problems continue to be the news because of major vehicle recalls from several manufacturers. This book includes 40 SAE technical papers, published from 2007 through 2010, that describe the latest research on automotive electronics reliability technology. This book will help engineers and researchers focus on the design strategies being used to minimize electronics reliability problems, and how to test and verify those strategies. After an overview of durability, risk assessment, and failure mechanisms, this book focuses on state-of-the-art techniques for reliability-based design, and reliability testing and verification. Topics include: powertrain control monitoring distributed automotive embedded systems model-based design x-by-wire systems battery durability design verification fault tree analysis The book also includes editor Ronald K. Jurgen’s introduction ,“Striving for Maximum Reliability in a Highly Complex Electronic Environment”, and a concluding section on the future of electronics reliability, including networking technology, domain control units, the use of AUTOSAR, and embedded software.
Prediction Technologies for Improving Engineering Product Efficiency
Author: Lev M. Klyatis
Publisher: Springer Nature
ISBN: 3031166558
Category : Technology & Engineering
Languages : en
Pages : 281
Book Description
This book is aimed at readers who need to learn the latest solutions for interconnected simulation, testing, and prediction technologies that improve engineering product efficiency, including reliability, safety, quality, durability, maintainability, life-cycle costing and profit. It provides a detailed analysis of technologies now being used in industries such as electronics, automotive, aircraft, aerospace, off-highway, farm machinery, and others. It includes clear examples, charts, and illustrations. This book provides analyses of the simulation, testing, and prediction approaches and methodologies with descriptive, negative trends in their development. The author discusses why many current methods of simulation, testing, and prediction are not successful and describes novel techniques and tools developed for eliminating these problems. This book is a tool for engineers, managers, researches in industry, teachers, and students. Lev Klyatis, Hab. Dr.-Ing., ScD., PhD, Senior Advisor SoHaR, Inc., has been a professor at Moscow State Agricultural Engineering University, research leader and chairman of State Enterprise TESTMASH, and served on the US Technical Advisory Group for the International Electrotechnical Commission (IEC), the ISO/IEC Join Study Group in Safety Aspects of Risk Assessment, the United Nations European Economical Commission, and US-USSR Trade and Economic Council. He is presently a member of World Quality Council, the Elmer A. Sperry Board of Award, SAE International G-41 Reliability Committee, the Integrated Design and Manufacturing Committee and session chairman of SAE International World Congresses in Detroit since 2012. His vast experience and innovation enable him to create a new direction for the successful prediction of product efficiency during any given time, including accurate simulation of real-world conditions, accelerated reliability and durability testing technology, and reducing recalls. His approach has been verified in various industries, primarily automotive, farm machinery, aerospace, and aircraft industries. He has shared his new direction working as the seminar instructor and consultant to Ford, DaimlerChrysler, Nissan, Toyota, Jatko Ltd., Thermo King, Black an Dekker, NASA Research Centers, Karl Schenck, and many others. He holds over 30 patents worldwide and is the author of over 300 publications, including 15 books.
Publisher: Springer Nature
ISBN: 3031166558
Category : Technology & Engineering
Languages : en
Pages : 281
Book Description
This book is aimed at readers who need to learn the latest solutions for interconnected simulation, testing, and prediction technologies that improve engineering product efficiency, including reliability, safety, quality, durability, maintainability, life-cycle costing and profit. It provides a detailed analysis of technologies now being used in industries such as electronics, automotive, aircraft, aerospace, off-highway, farm machinery, and others. It includes clear examples, charts, and illustrations. This book provides analyses of the simulation, testing, and prediction approaches and methodologies with descriptive, negative trends in their development. The author discusses why many current methods of simulation, testing, and prediction are not successful and describes novel techniques and tools developed for eliminating these problems. This book is a tool for engineers, managers, researches in industry, teachers, and students. Lev Klyatis, Hab. Dr.-Ing., ScD., PhD, Senior Advisor SoHaR, Inc., has been a professor at Moscow State Agricultural Engineering University, research leader and chairman of State Enterprise TESTMASH, and served on the US Technical Advisory Group for the International Electrotechnical Commission (IEC), the ISO/IEC Join Study Group in Safety Aspects of Risk Assessment, the United Nations European Economical Commission, and US-USSR Trade and Economic Council. He is presently a member of World Quality Council, the Elmer A. Sperry Board of Award, SAE International G-41 Reliability Committee, the Integrated Design and Manufacturing Committee and session chairman of SAE International World Congresses in Detroit since 2012. His vast experience and innovation enable him to create a new direction for the successful prediction of product efficiency during any given time, including accurate simulation of real-world conditions, accelerated reliability and durability testing technology, and reducing recalls. His approach has been verified in various industries, primarily automotive, farm machinery, aerospace, and aircraft industries. He has shared his new direction working as the seminar instructor and consultant to Ford, DaimlerChrysler, Nissan, Toyota, Jatko Ltd., Thermo King, Black an Dekker, NASA Research Centers, Karl Schenck, and many others. He holds over 30 patents worldwide and is the author of over 300 publications, including 15 books.
Independent Verification and Validation
Author: Robert O. Lewis
Publisher: John Wiley & Sons
ISBN: 9780471570110
Category : Computers
Languages : en
Pages : 388
Book Description
Comprehensive and up-to-date, it covers the most vital part of software development, independent verification and validation. Presents a variety of methods that will ensure better quality, performance, cost and reliability of technical products and systems. Features numerous hints, tips and instructions for better interaction between verification and validation personnel, development engineers and managers. Includes 8 case histories ranging from major engineering systems through information systems. Many of the principles involved also apply to computer hardware as well as the fields of science and engineering.
Publisher: John Wiley & Sons
ISBN: 9780471570110
Category : Computers
Languages : en
Pages : 388
Book Description
Comprehensive and up-to-date, it covers the most vital part of software development, independent verification and validation. Presents a variety of methods that will ensure better quality, performance, cost and reliability of technical products and systems. Features numerous hints, tips and instructions for better interaction between verification and validation personnel, development engineers and managers. Includes 8 case histories ranging from major engineering systems through information systems. Many of the principles involved also apply to computer hardware as well as the fields of science and engineering.
Understanding and Measuring the Shelf-Life of Food
Author: R. Steele
Publisher: Woodhead Publishing
ISBN: 9781855737327
Category : Cooking
Languages : en
Pages : 434
Book Description
The shelf-life of a product is critical in determining both its quality and profitability. This important collection reviews the key factors in determining shelf-life and how it can be measured. Part one examines the factors affecting shelf-life and spoilage, including individual chapters on the major types of food spoilage, the role of moisture and temperature, spoilage yeasts, the Maillard reaction and the factors underlying lipid oxidation. Part two addresses the best ways of measuring the shelf-life of foods, with chapters on modelling food spoilage, measuring and modelling glass transition, detecting spoilage yeasts, measuring lipid oxidation, the design and validation of shelf-life tests and the use of accelerated shelf-life tests. Understanding and measuring the shelf-life of food is an important reference for all those concerned with extending the shelf-life of food. Reviews the key factors in determining shelf-life and how they can be measured Examines the importance of the shelf-life of a product in determining its quality and profitability Brings together the leading international experts in the field
Publisher: Woodhead Publishing
ISBN: 9781855737327
Category : Cooking
Languages : en
Pages : 434
Book Description
The shelf-life of a product is critical in determining both its quality and profitability. This important collection reviews the key factors in determining shelf-life and how it can be measured. Part one examines the factors affecting shelf-life and spoilage, including individual chapters on the major types of food spoilage, the role of moisture and temperature, spoilage yeasts, the Maillard reaction and the factors underlying lipid oxidation. Part two addresses the best ways of measuring the shelf-life of foods, with chapters on modelling food spoilage, measuring and modelling glass transition, detecting spoilage yeasts, measuring lipid oxidation, the design and validation of shelf-life tests and the use of accelerated shelf-life tests. Understanding and measuring the shelf-life of food is an important reference for all those concerned with extending the shelf-life of food. Reviews the key factors in determining shelf-life and how they can be measured Examines the importance of the shelf-life of a product in determining its quality and profitability Brings together the leading international experts in the field