Abstract Convexity and Global Optimization

Abstract Convexity and Global Optimization PDF Author: Alexander M. Rubinov
Publisher: Springer Science & Business Media
ISBN: 1475732007
Category : Mathematics
Languages : en
Pages : 506

Get Book Here

Book Description
Special tools are required for examining and solving optimization problems. The main tools in the study of local optimization are classical calculus and its modern generalizions which form nonsmooth analysis. The gradient and various kinds of generalized derivatives allow us to ac complish a local approximation of a given function in a neighbourhood of a given point. This kind of approximation is very useful in the study of local extrema. However, local approximation alone cannot help to solve many problems of global optimization, so there is a clear need to develop special global tools for solving these problems. The simplest and most well-known area of global and simultaneously local optimization is convex programming. The fundamental tool in the study of convex optimization problems is the subgradient, which actu ally plays both a local and global role. First, a subgradient of a convex function f at a point x carries out a local approximation of f in a neigh bourhood of x. Second, the subgradient permits the construction of an affine function, which does not exceed f over the entire space and coincides with f at x. This affine function h is called a support func tion. Since f(y) ~ h(y) for ally, the second role is global. In contrast to a local approximation, the function h will be called a global affine support.

Abstract Convexity and Global Optimization

Abstract Convexity and Global Optimization PDF Author: Alexander M. Rubinov
Publisher: Springer Science & Business Media
ISBN: 1475732007
Category : Mathematics
Languages : en
Pages : 506

Get Book Here

Book Description
Special tools are required for examining and solving optimization problems. The main tools in the study of local optimization are classical calculus and its modern generalizions which form nonsmooth analysis. The gradient and various kinds of generalized derivatives allow us to ac complish a local approximation of a given function in a neighbourhood of a given point. This kind of approximation is very useful in the study of local extrema. However, local approximation alone cannot help to solve many problems of global optimization, so there is a clear need to develop special global tools for solving these problems. The simplest and most well-known area of global and simultaneously local optimization is convex programming. The fundamental tool in the study of convex optimization problems is the subgradient, which actu ally plays both a local and global role. First, a subgradient of a convex function f at a point x carries out a local approximation of f in a neigh bourhood of x. Second, the subgradient permits the construction of an affine function, which does not exceed f over the entire space and coincides with f at x. This affine function h is called a support func tion. Since f(y) ~ h(y) for ally, the second role is global. In contrast to a local approximation, the function h will be called a global affine support.

Abstract Convexity and Global Optimization

Abstract Convexity and Global Optimization PDF Author: Alexander M. Rubinov
Publisher: Springer Science & Business Media
ISBN: 9780792363231
Category : Mathematics
Languages : en
Pages : 516

Get Book Here

Book Description
This book consists of two parts. Firstly, the main notions of abstract convexity and their applications in the study of some classes of functions and sets are presented. Secondly, both theoretical and numerical aspects of global optimization based on abstract convexity are examined. Most of the book does not require knowledge of advanced mathematics. Classical methods of nonconvex mathematical programming, being based on a local approximation, cannot be used to examine and solve many problems of global optimization, and so there is a clear need to develop special global tools for solving these problems. Some of these tools are based on abstract convexity, that is, on the representation of a function of a rather complicated nature as the upper envelope of a set of fairly simple functions. Audience: The book will be of interest to specialists in global optimization, mathematical programming, and convex analysis, as well as engineers using mathematical tools and optimization techniques and specialists in mathematical modelling.

Convex Optimization

Convex Optimization PDF Author: Stephen P. Boyd
Publisher: Cambridge University Press
ISBN: 9780521833783
Category : Business & Economics
Languages : en
Pages : 744

Get Book Here

Book Description
Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.

Global Optimization

Global Optimization PDF Author: Marco Locatelli
Publisher: SIAM
ISBN: 1611972671
Category : Mathematics
Languages : en
Pages : 439

Get Book Here

Book Description
This volume contains a thorough overview of the rapidly growing field of global optimization, with chapters on key topics such as complexity, heuristic methods, derivation of lower bounds for minimization problems, and branch-and-bound methods and convergence. The final chapter offers both benchmark test problems and applications of global optimization, such as finding the conformation of a molecule or planning an optimal trajectory for interplanetary space travel. An appendix provides fundamental information on convex and concave functions. Intended for Ph.D. students, researchers, and practitioners looking for advanced solution methods to difficult optimization problems. It can be used as a supplementary text in an advanced graduate-level seminar.

Advances in Convex Analysis and Global Optimization

Advances in Convex Analysis and Global Optimization PDF Author: Nicolas Hadjisavvas
Publisher: Springer Science & Business Media
ISBN: 146130279X
Category : Mathematics
Languages : en
Pages : 601

Get Book Here

Book Description
There has been much recent progress in global optimization algo rithms for nonconvex continuous and discrete problems from both a theoretical and a practical perspective. Convex analysis plays a fun damental role in the analysis and development of global optimization algorithms. This is due essentially to the fact that virtually all noncon vex optimization problems can be described using differences of convex functions and differences of convex sets. A conference on Convex Analysis and Global Optimization was held during June 5 -9, 2000 at Pythagorion, Samos, Greece. The conference was honoring the memory of C. Caratheodory (1873-1950) and was en dorsed by the Mathematical Programming Society (MPS) and by the Society for Industrial and Applied Mathematics (SIAM) Activity Group in Optimization. The conference was sponsored by the European Union (through the EPEAEK program), the Department of Mathematics of the Aegean University and the Center for Applied Optimization of the University of Florida, by the General Secretariat of Research and Tech nology of Greece, by the Ministry of Education of Greece, and several local Greek government agencies and companies. This volume contains a selective collection of refereed papers based on invited and contribut ing talks presented at this conference. The two themes of convexity and global optimization pervade this book. The conference provided a forum for researchers working on different aspects of convexity and global opti mization to present their recent discoveries, and to interact with people working on complementary aspects of mathematical programming.

Generalized Convexity, Generalized Monotonicity and Applications

Generalized Convexity, Generalized Monotonicity and Applications PDF Author: Andrew Eberhard
Publisher: Springer Science & Business Media
ISBN: 0387236392
Category : Business & Economics
Languages : en
Pages : 342

Get Book Here

Book Description
In recent years there is a growing interest in generalized convex fu- tions and generalized monotone mappings among the researchers of - plied mathematics and other sciences. This is due to the fact that mathematical models with these functions are more suitable to describe problems of the real world than models using conventional convex and monotone functions. Generalized convexity and monotonicity are now considered as an independent branch of applied mathematics with a wide range of applications in mechanics, economics, engineering, finance and many others. The present volume contains 20 full length papers which reflect c- rent theoretical studies of generalized convexity and monotonicity, and numerous applications in optimization, variational inequalities, equil- rium problems etc. All these papers were refereed and carefully selected from invited talks and contributed talks that were presented at the 7th International Symposium on Generalized Convexity/Monotonicity held in Hanoi, Vietnam, August 27-31, 2002. This series of Symposia is or- nized by the Working Group on Generalized Convexity (WGGC) every 3 years and aims to promote and disseminate research on the field. The WGGC (http://www.genconv.org) consists of more than 300 researchers coming from 36 countries.

Convex Analysis and Nonlinear Optimization

Convex Analysis and Nonlinear Optimization PDF Author: Jonathan Borwein
Publisher: Springer Science & Business Media
ISBN: 0387312560
Category : Mathematics
Languages : en
Pages : 316

Get Book Here

Book Description
Optimization is a rich and thriving mathematical discipline, and the underlying theory of current computational optimization techniques grows ever more sophisticated. This book aims to provide a concise, accessible account of convex analysis and its applications and extensions, for a broad audience. Each section concludes with an often extensive set of optional exercises. This new edition adds material on semismooth optimization, as well as several new proofs.

Convex Analysis and Optimization

Convex Analysis and Optimization PDF Author: Dimitri Bertsekas
Publisher: Athena Scientific
ISBN: 1886529450
Category : Mathematics
Languages : en
Pages : 560

Get Book Here

Book Description
A uniquely pedagogical, insightful, and rigorous treatment of the analytical/geometrical foundations of optimization. The book provides a comprehensive development of convexity theory, and its rich applications in optimization, including duality, minimax/saddle point theory, Lagrange multipliers, and Lagrangian relaxation/nondifferentiable optimization. It is an excellent supplement to several of our books: Convex Optimization Theory (Athena Scientific, 2009), Convex Optimization Algorithms (Athena Scientific, 2015), Nonlinear Programming (Athena Scientific, 2016), Network Optimization (Athena Scientific, 1998), and Introduction to Linear Optimization (Athena Scientific, 1997). Aside from a thorough account of convex analysis and optimization, the book aims to restructure the theory of the subject, by introducing several novel unifying lines of analysis, including: 1) A unified development of minimax theory and constrained optimization duality as special cases of duality between two simple geometrical problems. 2) A unified development of conditions for existence of solutions of convex optimization problems, conditions for the minimax equality to hold, and conditions for the absence of a duality gap in constrained optimization. 3) A unification of the major constraint qualifications allowing the use of Lagrange multipliers for nonconvex constrained optimization, using the notion of constraint pseudonormality and an enhanced form of the Fritz John necessary optimality conditions. Among its features the book: a) Develops rigorously and comprehensively the theory of convex sets and functions, in the classical tradition of Fenchel and Rockafellar b) Provides a geometric, highly visual treatment of convex and nonconvex optimization problems, including existence of solutions, optimality conditions, Lagrange multipliers, and duality c) Includes an insightful and comprehensive presentation of minimax theory and zero sum games, and its connection with duality d) Describes dual optimization, the associated computational methods, including the novel incremental subgradient methods, and applications in linear, quadratic, and integer programming e) Contains many examples, illustrations, and exercises with complete solutions (about 200 pages) posted at the publisher's web site http://www.athenasc.com/convexity.html

Convex Optimization Theory

Convex Optimization Theory PDF Author: Dimitri Bertsekas
Publisher: Athena Scientific
ISBN: 1886529310
Category : Mathematics
Languages : en
Pages : 256

Get Book Here

Book Description
An insightful, concise, and rigorous treatment of the basic theory of convex sets and functions in finite dimensions, and the analytical/geometrical foundations of convex optimization and duality theory. Convexity theory is first developed in a simple accessible manner, using easily visualized proofs. Then the focus shifts to a transparent geometrical line of analysis to develop the fundamental duality between descriptions of convex functions in terms of points, and in terms of hyperplanes. Finally, convexity theory and abstract duality are applied to problems of constrained optimization, Fenchel and conic duality, and game theory to develop the sharpest possible duality results within a highly visual geometric framework. This on-line version of the book, includes an extensive set of theoretical problems with detailed high-quality solutions, which significantly extend the range and value of the book. The book may be used as a text for a theoretical convex optimization course; the author has taught several variants of such a course at MIT and elsewhere over the last ten years. It may also be used as a supplementary source for nonlinear programming classes, and as a theoretical foundation for classes focused on convex optimization models (rather than theory). It is an excellent supplement to several of our books: Convex Optimization Algorithms (Athena Scientific, 2015), Nonlinear Programming (Athena Scientific, 2017), Network Optimization(Athena Scientific, 1998), Introduction to Linear Optimization (Athena Scientific, 1997), and Network Flows and Monotropic Optimization (Athena Scientific, 1998).

Handbook of Global Optimization

Handbook of Global Optimization PDF Author: Panos M. Pardalos
Publisher: Springer Science & Business Media
ISBN: 1475753624
Category : Mathematics
Languages : en
Pages : 571

Get Book Here

Book Description
In 1995 the Handbook of Global Optimization (first volume), edited by R. Horst, and P.M. Pardalos, was published. This second volume of the Handbook of Global Optimization is comprised of chapters dealing with modern approaches to global optimization, including different types of heuristics. Topics covered in the handbook include various metaheuristics, such as simulated annealing, genetic algorithms, neural networks, taboo search, shake-and-bake methods, and deformation methods. In addition, the book contains chapters on new exact stochastic and deterministic approaches to continuous and mixed-integer global optimization, such as stochastic adaptive search, two-phase methods, branch-and-bound methods with new relaxation and branching strategies, algorithms based on local optimization, and dynamical search. Finally, the book contains chapters on experimental analysis of algorithms and software, test problems, and applications.