Author: Alan Hinchliffe
Publisher: CRC Press
ISBN:
Category : Art
Languages : en
Pages : 184
Book Description
Computational quantum chemistry was born in the mid 1960s, and had by the early 1980s achieved considerable status as a structural tool within chemistry. The field has now developed to the point where it has its own journals. However, a major change is taking place in that most consumers of computational quantum chemistry are now experimentalists, who want answers to questions of the type "What if.....?" This change has come about because of the dramatic fall in computer hardware costs, the ready availability of large molecular structure packages and the international collaboration between quantum chemists on a scale rarely witnessed in science. This book aims to show what can be done by computational chemistry, and what kind of reliance might be placed on the predictions. The vast majority of investigations are made at the 'ab initio self consistent field' level, and the results of such calculations occupy a prominent role in this book. However, the user has to be aware of the limitations of this model, and the effects upon electron correlation, etc are discussed. Anyone who is contemplating making use of the techniques of computational quantum chemistry to rationalise or predict chemical behaviour will find this unique book of tremendous use.
Ab Initio Determination of Molecular Properties,
Author: Alan Hinchliffe
Publisher: CRC Press
ISBN:
Category : Art
Languages : en
Pages : 184
Book Description
Computational quantum chemistry was born in the mid 1960s, and had by the early 1980s achieved considerable status as a structural tool within chemistry. The field has now developed to the point where it has its own journals. However, a major change is taking place in that most consumers of computational quantum chemistry are now experimentalists, who want answers to questions of the type "What if.....?" This change has come about because of the dramatic fall in computer hardware costs, the ready availability of large molecular structure packages and the international collaboration between quantum chemists on a scale rarely witnessed in science. This book aims to show what can be done by computational chemistry, and what kind of reliance might be placed on the predictions. The vast majority of investigations are made at the 'ab initio self consistent field' level, and the results of such calculations occupy a prominent role in this book. However, the user has to be aware of the limitations of this model, and the effects upon electron correlation, etc are discussed. Anyone who is contemplating making use of the techniques of computational quantum chemistry to rationalise or predict chemical behaviour will find this unique book of tremendous use.
Publisher: CRC Press
ISBN:
Category : Art
Languages : en
Pages : 184
Book Description
Computational quantum chemistry was born in the mid 1960s, and had by the early 1980s achieved considerable status as a structural tool within chemistry. The field has now developed to the point where it has its own journals. However, a major change is taking place in that most consumers of computational quantum chemistry are now experimentalists, who want answers to questions of the type "What if.....?" This change has come about because of the dramatic fall in computer hardware costs, the ready availability of large molecular structure packages and the international collaboration between quantum chemists on a scale rarely witnessed in science. This book aims to show what can be done by computational chemistry, and what kind of reliance might be placed on the predictions. The vast majority of investigations are made at the 'ab initio self consistent field' level, and the results of such calculations occupy a prominent role in this book. However, the user has to be aware of the limitations of this model, and the effects upon electron correlation, etc are discussed. Anyone who is contemplating making use of the techniques of computational quantum chemistry to rationalise or predict chemical behaviour will find this unique book of tremendous use.
Quantum-Mechanical Ab-initio Calculation of the Properties of Crystalline Materials
Author: Cesare Pisani
Publisher: Springer Science & Business Media
ISBN: 3642614787
Category : Science
Languages : en
Pages : 331
Book Description
A number of general-purpose, reasonably accurate and well-tested ab-initio codes for crystals are discussed in this book. The aim is to expand competence of their application in material sciences and solid-state physics. The book addresses particularly readers with a general knowledge in quantum chemistry and intends to give a deeper insight into the special algorithms and computational techniques in ab-initio computer codes for crystals. Three different programs which are available to all interested potential users on request are presented.
Publisher: Springer Science & Business Media
ISBN: 3642614787
Category : Science
Languages : en
Pages : 331
Book Description
A number of general-purpose, reasonably accurate and well-tested ab-initio codes for crystals are discussed in this book. The aim is to expand competence of their application in material sciences and solid-state physics. The book addresses particularly readers with a general knowledge in quantum chemistry and intends to give a deeper insight into the special algorithms and computational techniques in ab-initio computer codes for crystals. Three different programs which are available to all interested potential users on request are presented.
Ab Initio Molecular Dynamics
Author: Dominik Marx
Publisher: Cambridge University Press
ISBN: 1139477196
Category : Science
Languages : en
Pages : 503
Book Description
Ab initio molecular dynamics revolutionized the field of realistic computer simulation of complex molecular systems and processes, including chemical reactions, by unifying molecular dynamics and electronic structure theory. This book provides the first coherent presentation of this rapidly growing field, covering a vast range of methods and their applications, from basic theory to advanced methods. This fascinating text for graduate students and researchers contains systematic derivations of various ab initio molecular dynamics techniques to enable readers to understand and assess the merits and drawbacks of commonly used methods. It also discusses the special features of the widely used Car–Parrinello approach, correcting various misconceptions currently found in research literature. The book contains pseudo-code and program layout for typical plane wave electronic structure codes, allowing newcomers to the field to understand commonly used program packages and enabling developers to improve and add new features in their code.
Publisher: Cambridge University Press
ISBN: 1139477196
Category : Science
Languages : en
Pages : 503
Book Description
Ab initio molecular dynamics revolutionized the field of realistic computer simulation of complex molecular systems and processes, including chemical reactions, by unifying molecular dynamics and electronic structure theory. This book provides the first coherent presentation of this rapidly growing field, covering a vast range of methods and their applications, from basic theory to advanced methods. This fascinating text for graduate students and researchers contains systematic derivations of various ab initio molecular dynamics techniques to enable readers to understand and assess the merits and drawbacks of commonly used methods. It also discusses the special features of the widely used Car–Parrinello approach, correcting various misconceptions currently found in research literature. The book contains pseudo-code and program layout for typical plane wave electronic structure codes, allowing newcomers to the field to understand commonly used program packages and enabling developers to improve and add new features in their code.
Quantum Information and Computation for Chemistry, Volume 154
Author: Sabre Kais
Publisher: Wiley
ISBN: 9781118495667
Category : Science
Languages : en
Pages : 696
Book Description
Examines the intersection of quantum information and chemical physics The Advances in Chemical Physics series is dedicated to reviewing new and emerging topics as well as the latest developments in traditional areas of study in the field of chemical physics. Each volume features detailed comprehensive analyses coupled with individual points of view that integrate the many disciplines of science that are needed for a full understanding of chemical physics. This volume of the series explores the latest research findings, applications, and new research paths from the quantum information science community. It examines topics in quantum computation and quantum information that are related to or intersect with key topics in chemical physics. The reviews address both what chemistry can contribute to quantum information and what quantum information can contribute to the study of chemical systems, surveying both theoretical and experimental quantum information research within the field of chemical physics. With contributions from an international team of leading experts, Volume 154 offers seventeen detailed reviews, including: Introduction to quantum information and computation for chemistry Quantum computing approach to non-relativistic and relativistic molecular energy calculations Quantum algorithms for continuous problems and their applications Photonic toolbox for quantum simulation Vibrational energy and information transfer through molecular chains Tensor networks for entanglement evolution Reviews published in Advances in Chemical Physics are typically longer than those published in journals, providing the space needed for readers to fully grasp the topic: the fundamentals as well as the latest discoveries, applications, and emerging avenues of research. Extensive cross-referencing enables readers to explore the primary research studies underlying each topic.
Publisher: Wiley
ISBN: 9781118495667
Category : Science
Languages : en
Pages : 696
Book Description
Examines the intersection of quantum information and chemical physics The Advances in Chemical Physics series is dedicated to reviewing new and emerging topics as well as the latest developments in traditional areas of study in the field of chemical physics. Each volume features detailed comprehensive analyses coupled with individual points of view that integrate the many disciplines of science that are needed for a full understanding of chemical physics. This volume of the series explores the latest research findings, applications, and new research paths from the quantum information science community. It examines topics in quantum computation and quantum information that are related to or intersect with key topics in chemical physics. The reviews address both what chemistry can contribute to quantum information and what quantum information can contribute to the study of chemical systems, surveying both theoretical and experimental quantum information research within the field of chemical physics. With contributions from an international team of leading experts, Volume 154 offers seventeen detailed reviews, including: Introduction to quantum information and computation for chemistry Quantum computing approach to non-relativistic and relativistic molecular energy calculations Quantum algorithms for continuous problems and their applications Photonic toolbox for quantum simulation Vibrational energy and information transfer through molecular chains Tensor networks for entanglement evolution Reviews published in Advances in Chemical Physics are typically longer than those published in journals, providing the space needed for readers to fully grasp the topic: the fundamentals as well as the latest discoveries, applications, and emerging avenues of research. Extensive cross-referencing enables readers to explore the primary research studies underlying each topic.
Computational Chemistry
Author: Errol G. Lewars
Publisher: Springer Science & Business Media
ISBN: 0306483912
Category : Science
Languages : en
Pages : 474
Book Description
Computational chemistry has become extremely important in the last decade, being widely used in academic and industrial research. Yet there have been few books designed to teach the subject to nonspecialists. Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics is an invaluable tool for teaching and researchers alike. The book provides an overview of the field, explains the basic underlying theory at a meaningful level that is not beyond beginners, and it gives numerous comparisons of different methods with one another and with experiment. The following concepts are illustrated and their possibilities and limitations are given: - potential energy surfaces; - simple and extended Hückel methods; - ab initio, AM1 and related semiempirical methods; - density functional theory (DFT). Topics are placed in a historical context, adding interest to them and removing much of their apparently arbitrary aspect. The large number of references, to all significant topics mentioned, should make this book useful not only to undergraduates but also to graduate students and academic and industrial researchers.
Publisher: Springer Science & Business Media
ISBN: 0306483912
Category : Science
Languages : en
Pages : 474
Book Description
Computational chemistry has become extremely important in the last decade, being widely used in academic and industrial research. Yet there have been few books designed to teach the subject to nonspecialists. Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics is an invaluable tool for teaching and researchers alike. The book provides an overview of the field, explains the basic underlying theory at a meaningful level that is not beyond beginners, and it gives numerous comparisons of different methods with one another and with experiment. The following concepts are illustrated and their possibilities and limitations are given: - potential energy surfaces; - simple and extended Hückel methods; - ab initio, AM1 and related semiempirical methods; - density functional theory (DFT). Topics are placed in a historical context, adding interest to them and removing much of their apparently arbitrary aspect. The large number of references, to all significant topics mentioned, should make this book useful not only to undergraduates but also to graduate students and academic and industrial researchers.
Molecular Design
Author: A.L. Horvath
Publisher: Elsevier
ISBN: 0444596739
Category : Science
Languages : en
Pages : 1505
Book Description
This book is a systematic presentation of the methods that have been developed for the interpretation of molecular modeling to the design of new chemicals. The main feature of the compilation is the co-ordination of the various scientific disciplines required for the generation of new compounds. The five chapters deal with such areas as structure and properties of organic compounds, relationships between structure and properties, and models for structure generation. The subject is covered in sufficient depth to provide readers with the necessary background to understand the modeling techniques. The book will be of value to chemists in industries involved in the manufacture of organic chemicals such as solvents refrigerants, blood substitutes, etc. It also serves as a reference work for researchers, academics, consultants, and students interested in molecular design.
Publisher: Elsevier
ISBN: 0444596739
Category : Science
Languages : en
Pages : 1505
Book Description
This book is a systematic presentation of the methods that have been developed for the interpretation of molecular modeling to the design of new chemicals. The main feature of the compilation is the co-ordination of the various scientific disciplines required for the generation of new compounds. The five chapters deal with such areas as structure and properties of organic compounds, relationships between structure and properties, and models for structure generation. The subject is covered in sufficient depth to provide readers with the necessary background to understand the modeling techniques. The book will be of value to chemists in industries involved in the manufacture of organic chemicals such as solvents refrigerants, blood substitutes, etc. It also serves as a reference work for researchers, academics, consultants, and students interested in molecular design.
Molecular and Nano Electronics: Analysis, Design and Simulation
Author: Jorge M. Seminario
Publisher: Elsevier
ISBN: 0080465838
Category : Science
Languages : en
Pages : 293
Book Description
The aim of Molecular and Nano Electronics: Analysis, Design and Simulation is to draw together contributions from some of the most active researchers in this new field in order to illustrate a theory guided-approach to the design of molecular and nano-electronics. The field of molecular and nano-electronics has driven solutions for a post microelectronics era, where microelectronics dominate through the use of silicon as the preferred material and photo-lithography as the fabrication technique to build binary devices (transistors). The construction of such devices yields gates that are able to perform Boolean operations and can be combined with computational systems, capable of storing, processing, and transmitting digital signals encoded as electron currents and charges. Since the invention of the integrated circuits, microelectronics has reached increasing performances by decreasing strategically the size of its devices and systems, an approach known as scaling-down, which simultaneously allow the devices to operate at higher speeds.* Provides a theory-guided approach to the design of molecular and nano-electronics* Includes solutions for researchers working in this area* Contributions from some of the most active researchers in the field of nano-electronics
Publisher: Elsevier
ISBN: 0080465838
Category : Science
Languages : en
Pages : 293
Book Description
The aim of Molecular and Nano Electronics: Analysis, Design and Simulation is to draw together contributions from some of the most active researchers in this new field in order to illustrate a theory guided-approach to the design of molecular and nano-electronics. The field of molecular and nano-electronics has driven solutions for a post microelectronics era, where microelectronics dominate through the use of silicon as the preferred material and photo-lithography as the fabrication technique to build binary devices (transistors). The construction of such devices yields gates that are able to perform Boolean operations and can be combined with computational systems, capable of storing, processing, and transmitting digital signals encoded as electron currents and charges. Since the invention of the integrated circuits, microelectronics has reached increasing performances by decreasing strategically the size of its devices and systems, an approach known as scaling-down, which simultaneously allow the devices to operate at higher speeds.* Provides a theory-guided approach to the design of molecular and nano-electronics* Includes solutions for researchers working in this area* Contributions from some of the most active researchers in the field of nano-electronics
Atomic-Scale Modelling of Electrochemical Systems
Author: Marko M. Melander
Publisher: John Wiley & Sons
ISBN: 1119605636
Category : Science
Languages : en
Pages : 372
Book Description
Atomic-Scale Modelling of Electrochemical Systems A comprehensive overview of atomistic computational electrochemistry, discussing methods, implementation, and state-of-the-art applications in the field The first book to review state-of-the-art computational and theoretical methods for modelling, understanding, and predicting the properties of electrochemical interfaces. This book presents a detailed description of the current methods, their background, limitations, and use for addressing the electrochemical interface and reactions. It also highlights several applications in electrocatalysis and electrochemistry. Atomic-Scale Modelling of Electrochemical Systems discusses different ways of including the electrode potential in the computational setup and fixed potential calculations within the framework of grand canonical density functional theory. It examines classical and quantum mechanical models for the solid-liquid interface and formation of an electrochemical double-layer using molecular dynamics and/or continuum descriptions. A thermodynamic description of the interface and reactions taking place at the interface as a function of the electrode potential is provided, as are novel ways to describe rates of heterogeneous electron transfer, proton-coupled electron transfer, and other electrocatalytic reactions. The book also covers multiscale modelling, where atomic level information is used for predicting experimental observables to enable direct comparison with experiments, to rationalize experimental results, and to predict the following electrochemical performance. Uniquely explains how to understand, predict, and optimize the properties and reactivity of electrochemical interfaces starting from the atomic scale Uses an engaging “tutorial style” presentation, highlighting a solid physicochemical background, computational implementation, and applications for different methods, including merits and limitations Bridges the gap between experimental electrochemistry and computational atomistic modelling Written by a team of experts within the field of computational electrochemistry and the wider computational condensed matter community, this book serves as an introduction to the subject for readers entering the field of atom-level electrochemical modeling, while also serving as an invaluable reference for advanced practitioners already working in the field.
Publisher: John Wiley & Sons
ISBN: 1119605636
Category : Science
Languages : en
Pages : 372
Book Description
Atomic-Scale Modelling of Electrochemical Systems A comprehensive overview of atomistic computational electrochemistry, discussing methods, implementation, and state-of-the-art applications in the field The first book to review state-of-the-art computational and theoretical methods for modelling, understanding, and predicting the properties of electrochemical interfaces. This book presents a detailed description of the current methods, their background, limitations, and use for addressing the electrochemical interface and reactions. It also highlights several applications in electrocatalysis and electrochemistry. Atomic-Scale Modelling of Electrochemical Systems discusses different ways of including the electrode potential in the computational setup and fixed potential calculations within the framework of grand canonical density functional theory. It examines classical and quantum mechanical models for the solid-liquid interface and formation of an electrochemical double-layer using molecular dynamics and/or continuum descriptions. A thermodynamic description of the interface and reactions taking place at the interface as a function of the electrode potential is provided, as are novel ways to describe rates of heterogeneous electron transfer, proton-coupled electron transfer, and other electrocatalytic reactions. The book also covers multiscale modelling, where atomic level information is used for predicting experimental observables to enable direct comparison with experiments, to rationalize experimental results, and to predict the following electrochemical performance. Uniquely explains how to understand, predict, and optimize the properties and reactivity of electrochemical interfaces starting from the atomic scale Uses an engaging “tutorial style” presentation, highlighting a solid physicochemical background, computational implementation, and applications for different methods, including merits and limitations Bridges the gap between experimental electrochemistry and computational atomistic modelling Written by a team of experts within the field of computational electrochemistry and the wider computational condensed matter community, this book serves as an introduction to the subject for readers entering the field of atom-level electrochemical modeling, while also serving as an invaluable reference for advanced practitioners already working in the field.
Reviews in Computational Chemistry, Volume 17
Author: Kenny B. Lipkowitz
Publisher: John Wiley & Sons
ISBN: 0471458813
Category : Science
Languages : en
Pages : 431
Book Description
Computational chemistry is increasingly used in most areas of molecular science including organic, inorganic, medicinal, biological, physical, and analytical chemistry. Researchers in these fields who do molecular modelling need to understand and stay current with recent developments. This volume, like those prior to it, features chapters by experts in various fields of computational chemistry. Two chapters focus on molecular docking, one of which relates to drug discovery and cheminformatics and the other to proteomics. In addition, this volume contains tutorials on spin-orbit coupling and cellular automata modeling, as well as an extensive bibliography of computational chemistry books. FROM REVIEWS OF THE SERIES "Reviews in Computational Chemistry remains the most valuable reference to methods and techniques in computational chemistry."—JOURNAL OF MOLECULAR GRAPHICS AND MODELLING "One cannot generally do better than to try to find an appropriate article in the highly successful Reviews in Computational Chemistry. The basic philosophy of the editors seems to be to help the authors produce chapters that are complete, accurate, clear, and accessible to experimentalists (in particular) and other nonspecialists (in general)."—JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Publisher: John Wiley & Sons
ISBN: 0471458813
Category : Science
Languages : en
Pages : 431
Book Description
Computational chemistry is increasingly used in most areas of molecular science including organic, inorganic, medicinal, biological, physical, and analytical chemistry. Researchers in these fields who do molecular modelling need to understand and stay current with recent developments. This volume, like those prior to it, features chapters by experts in various fields of computational chemistry. Two chapters focus on molecular docking, one of which relates to drug discovery and cheminformatics and the other to proteomics. In addition, this volume contains tutorials on spin-orbit coupling and cellular automata modeling, as well as an extensive bibliography of computational chemistry books. FROM REVIEWS OF THE SERIES "Reviews in Computational Chemistry remains the most valuable reference to methods and techniques in computational chemistry."—JOURNAL OF MOLECULAR GRAPHICS AND MODELLING "One cannot generally do better than to try to find an appropriate article in the highly successful Reviews in Computational Chemistry. The basic philosophy of the editors seems to be to help the authors produce chapters that are complete, accurate, clear, and accessible to experimentalists (in particular) and other nonspecialists (in general)."—JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
Molecular Quantum Mechanics
Author: Peter W. Atkins
Publisher: Oxford University Press
ISBN: 0199541426
Category : Science
Languages : en
Pages : 552
Book Description
This text unravels those fundamental physical principles which explain how all matter behaves. It takes us from the foundations of quantum mechanics, through quantum models of atomic, molecular, and electronic structure, and on to discussions of spectroscopy, and the electronic and magnetic properties of molecules.
Publisher: Oxford University Press
ISBN: 0199541426
Category : Science
Languages : en
Pages : 552
Book Description
This text unravels those fundamental physical principles which explain how all matter behaves. It takes us from the foundations of quantum mechanics, through quantum models of atomic, molecular, and electronic structure, and on to discussions of spectroscopy, and the electronic and magnetic properties of molecules.