Author: Alan Tucker
Publisher: MacMillan Publishing Company
ISBN:
Category : Mathematics
Languages : en
Pages : 568
Book Description
A Unified Introduction to Linear Algebra
Author: Alan Tucker
Publisher: MacMillan Publishing Company
ISBN:
Category : Mathematics
Languages : en
Pages : 568
Book Description
Publisher: MacMillan Publishing Company
ISBN:
Category : Mathematics
Languages : en
Pages : 568
Book Description
Linear Algebra, Signal Processing, and Wavelets - A Unified Approach
Author: Øyvind Ryan
Publisher: Springer
ISBN: 3030018121
Category : Mathematics
Languages : en
Pages : 381
Book Description
This book offers a user friendly, hands-on, and systematic introduction to applied and computational harmonic analysis: to Fourier analysis, signal processing and wavelets; and to their interplay and applications. The approach is novel, and the book can be used in undergraduate courses, for example, following a first course in linear algebra, but is also suitable for use in graduate level courses. The book will benefit anyone with a basic background in linear algebra. It defines fundamental concepts in signal processing and wavelet theory, assuming only a familiarity with elementary linear algebra. No background in signal processing is needed. Additionally, the book demonstrates in detail why linear algebra is often the best way to go. Those with only a signal processing background are also introduced to the world of linear algebra, although a full course is recommended. The book comes in two versions: one based on MATLAB, and one on Python, demonstrating the feasibility and applications of both approaches. Most of the MATLAB code is available interactively. The applications mainly involve sound and images. The book also includes a rich set of exercises, many of which are of a computational nature.
Publisher: Springer
ISBN: 3030018121
Category : Mathematics
Languages : en
Pages : 381
Book Description
This book offers a user friendly, hands-on, and systematic introduction to applied and computational harmonic analysis: to Fourier analysis, signal processing and wavelets; and to their interplay and applications. The approach is novel, and the book can be used in undergraduate courses, for example, following a first course in linear algebra, but is also suitable for use in graduate level courses. The book will benefit anyone with a basic background in linear algebra. It defines fundamental concepts in signal processing and wavelet theory, assuming only a familiarity with elementary linear algebra. No background in signal processing is needed. Additionally, the book demonstrates in detail why linear algebra is often the best way to go. Those with only a signal processing background are also introduced to the world of linear algebra, although a full course is recommended. The book comes in two versions: one based on MATLAB, and one on Python, demonstrating the feasibility and applications of both approaches. Most of the MATLAB code is available interactively. The applications mainly involve sound and images. The book also includes a rich set of exercises, many of which are of a computational nature.
Introduction to Applied Linear Algebra
Author: Stephen Boyd
Publisher: Cambridge University Press
ISBN: 1316518965
Category : Business & Economics
Languages : en
Pages : 477
Book Description
A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.
Publisher: Cambridge University Press
ISBN: 1316518965
Category : Business & Economics
Languages : en
Pages : 477
Book Description
A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.
Student Solution Manual to Accompany the 4th Edition of Vector Calculus, Linear Algebra, and Differential Forms, a Unified Approach
Author: John Hamal Hubbard
Publisher:
ISBN: 9780971576674
Category : Algebras, Linear
Languages : en
Pages : 284
Book Description
Publisher:
ISBN: 9780971576674
Category : Algebras, Linear
Languages : en
Pages : 284
Book Description
A (Terse) Introduction to Linear Algebra
Author: Yitzhak Katznelson
Publisher: American Mathematical Soc.
ISBN: 0821844199
Category : Mathematics
Languages : en
Pages : 234
Book Description
Linear algebra is the study of vector spaces and the linear maps between them. It underlies much of modern mathematics and is widely used in applications.
Publisher: American Mathematical Soc.
ISBN: 0821844199
Category : Mathematics
Languages : en
Pages : 234
Book Description
Linear algebra is the study of vector spaces and the linear maps between them. It underlies much of modern mathematics and is widely used in applications.
Introduction to Linear Algebra
Author: Donald J. Wright
Publisher:
ISBN: 9780071168496
Category : Algebras, Linear
Languages : en
Pages : 392
Book Description
Publisher:
ISBN: 9780071168496
Category : Algebras, Linear
Languages : en
Pages : 392
Book Description
Dynamical Systems and Linear Algebra
Author: Fritz Colonius
Publisher: American Mathematical Society
ISBN: 0821883194
Category : Mathematics
Languages : en
Pages : 302
Book Description
This book provides an introduction to the interplay between linear algebra and dynamical systems in continuous time and in discrete time. It first reviews the autonomous case for one matrix A via induced dynamical systems in ℝd and on Grassmannian manifolds. Then the main nonautonomous approaches are presented for which the time dependency of A(t) is given via skew-product flows using periodicity, or topological (chain recurrence) or ergodic properties (invariant measures). The authors develop generalizations of (real parts of) eigenvalues and eigenspaces as a starting point for a linear algebra for classes of time-varying linear systems, namely periodic, random, and perturbed (or controlled) systems. The book presents for the first time in one volume a unified approach via Lyapunov exponents to detailed proofs of Floquet theory, of the properties of the Morse spectrum, and of the multiplicative ergodic theorem for products of random matrices. The main tools, chain recurrence and Morse decompositions, as well as classical ergodic theory are introduced in a way that makes the entire material accessible for beginning graduate students.
Publisher: American Mathematical Society
ISBN: 0821883194
Category : Mathematics
Languages : en
Pages : 302
Book Description
This book provides an introduction to the interplay between linear algebra and dynamical systems in continuous time and in discrete time. It first reviews the autonomous case for one matrix A via induced dynamical systems in ℝd and on Grassmannian manifolds. Then the main nonautonomous approaches are presented for which the time dependency of A(t) is given via skew-product flows using periodicity, or topological (chain recurrence) or ergodic properties (invariant measures). The authors develop generalizations of (real parts of) eigenvalues and eigenspaces as a starting point for a linear algebra for classes of time-varying linear systems, namely periodic, random, and perturbed (or controlled) systems. The book presents for the first time in one volume a unified approach via Lyapunov exponents to detailed proofs of Floquet theory, of the properties of the Morse spectrum, and of the multiplicative ergodic theorem for products of random matrices. The main tools, chain recurrence and Morse decompositions, as well as classical ergodic theory are introduced in a way that makes the entire material accessible for beginning graduate students.
Matrix Algebra for Linear Models
Author: Marvin H. J. Gruber
Publisher: John Wiley & Sons
ISBN: 1118592557
Category : Mathematics
Languages : en
Pages : 391
Book Description
A self-contained introduction to matrix analysis theory and applications in the field of statistics Comprehensive in scope, Matrix Algebra for Linear Models offers a succinct summary of matrix theory and its related applications to statistics, especially linear models. The book provides a unified presentation of the mathematical properties and statistical applications of matrices in order to define and manipulate data. Written for theoretical and applied statisticians, the book utilizes multiple numerical examples to illustrate key ideas, methods, and techniques crucial to understanding matrix algebra’s application in linear models. Matrix Algebra for Linear Models expertly balances concepts and methods allowing for a side-by-side presentation of matrix theory and its linear model applications. Including concise summaries on each topic, the book also features: Methods of deriving results from the properties of eigenvalues and the singular value decomposition Solutions to matrix optimization problems for obtaining more efficient biased estimators for parameters in linear regression models A section on the generalized singular value decomposition Multiple chapter exercises with selected answers to enhance understanding of the presented material Matrix Algebra for Linear Models is an ideal textbook for advanced undergraduate and graduate-level courses on statistics, matrices, and linear algebra. The book is also an excellent reference for statisticians, engineers, economists, and readers interested in the linear statistical model.
Publisher: John Wiley & Sons
ISBN: 1118592557
Category : Mathematics
Languages : en
Pages : 391
Book Description
A self-contained introduction to matrix analysis theory and applications in the field of statistics Comprehensive in scope, Matrix Algebra for Linear Models offers a succinct summary of matrix theory and its related applications to statistics, especially linear models. The book provides a unified presentation of the mathematical properties and statistical applications of matrices in order to define and manipulate data. Written for theoretical and applied statisticians, the book utilizes multiple numerical examples to illustrate key ideas, methods, and techniques crucial to understanding matrix algebra’s application in linear models. Matrix Algebra for Linear Models expertly balances concepts and methods allowing for a side-by-side presentation of matrix theory and its linear model applications. Including concise summaries on each topic, the book also features: Methods of deriving results from the properties of eigenvalues and the singular value decomposition Solutions to matrix optimization problems for obtaining more efficient biased estimators for parameters in linear regression models A section on the generalized singular value decomposition Multiple chapter exercises with selected answers to enhance understanding of the presented material Matrix Algebra for Linear Models is an ideal textbook for advanced undergraduate and graduate-level courses on statistics, matrices, and linear algebra. The book is also an excellent reference for statisticians, engineers, economists, and readers interested in the linear statistical model.
Linear Models and the Relevant Distributions and Matrix Algebra
Author: David A. Harville
Publisher: CRC Press
ISBN: 1000983811
Category : Mathematics
Languages : en
Pages : 1030
Book Description
Linear Models and the Relevant Distributions and Matrix Algebra: A Unified Approach, Volume 2 covers several important topics that were not included in the first volume. The second volume complements the first, providing detailed solutions to the exercises in both volumes, thereby greatly enhancing its appeal for use in advanced statistics programs. This volume can serve as a valuable reference. It can also serve as a resource in a mathematical statistics course for use in illustrating various theoretical concepts in the context of a relatively complex setting of great practical importance. Together with the first volume, this volume provides a largely self-contained treatment of an important area of statistics and should prove highly useful to graduate students and others. Key Features: • Includes solutions to the exercises from both the first and second volumes • Includes coverage of several topics not covered in the first volume • Highly valuable as a reference book for graduate students and researchers
Publisher: CRC Press
ISBN: 1000983811
Category : Mathematics
Languages : en
Pages : 1030
Book Description
Linear Models and the Relevant Distributions and Matrix Algebra: A Unified Approach, Volume 2 covers several important topics that were not included in the first volume. The second volume complements the first, providing detailed solutions to the exercises in both volumes, thereby greatly enhancing its appeal for use in advanced statistics programs. This volume can serve as a valuable reference. It can also serve as a resource in a mathematical statistics course for use in illustrating various theoretical concepts in the context of a relatively complex setting of great practical importance. Together with the first volume, this volume provides a largely self-contained treatment of an important area of statistics and should prove highly useful to graduate students and others. Key Features: • Includes solutions to the exercises from both the first and second volumes • Includes coverage of several topics not covered in the first volume • Highly valuable as a reference book for graduate students and researchers
Linear Algebra
Author: Elizabeth S. Meckes
Publisher: Cambridge University Press
ISBN: 1316836029
Category : Mathematics
Languages : en
Pages : 448
Book Description
Linear Algebra offers a unified treatment of both matrix-oriented and theoretical approaches to the course, which will be useful for classes with a mix of mathematics, physics, engineering, and computer science students. Major topics include singular value decomposition, the spectral theorem, linear systems of equations, vector spaces, linear maps, matrices, eigenvalues and eigenvectors, linear independence, bases, coordinates, dimension, matrix factorizations, inner products, norms, and determinants.
Publisher: Cambridge University Press
ISBN: 1316836029
Category : Mathematics
Languages : en
Pages : 448
Book Description
Linear Algebra offers a unified treatment of both matrix-oriented and theoretical approaches to the course, which will be useful for classes with a mix of mathematics, physics, engineering, and computer science students. Major topics include singular value decomposition, the spectral theorem, linear systems of equations, vector spaces, linear maps, matrices, eigenvalues and eigenvectors, linear independence, bases, coordinates, dimension, matrix factorizations, inner products, norms, and determinants.