Author: Douglas Smith
Publisher: Cengage Learning
ISBN: 9780495562023
Category : Mathematics
Languages : en
Pages : 416
Book Description
A TRANSITION TO ADVANCED MATHEMATICS helps students make the transition from calculus to more proofs-oriented mathematical study. The most successful text of its kind, the 7th edition continues to provide a firm foundation in major concepts needed for continued study and guides students to think and express themselves mathematically to analyze a situation, extract pertinent facts, and draw appropriate conclusions. The authors place continuous emphasis throughout on improving students' ability to read and write proofs, and on developing their critical awareness for spotting common errors in proofs. Concepts are clearly explained and supported with detailed examples, while abundant and diverse exercises provide thorough practice on both routine and more challenging problems. Students will come away with a solid intuition for the types of mathematical reasoning they'll need to apply in later courses and a better understanding of how mathematicians of all kinds approach and solve problems. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.
A Transition to Advanced Mathematics
Author: Douglas Smith
Publisher: Cengage Learning
ISBN: 9780495562023
Category : Mathematics
Languages : en
Pages : 416
Book Description
A TRANSITION TO ADVANCED MATHEMATICS helps students make the transition from calculus to more proofs-oriented mathematical study. The most successful text of its kind, the 7th edition continues to provide a firm foundation in major concepts needed for continued study and guides students to think and express themselves mathematically to analyze a situation, extract pertinent facts, and draw appropriate conclusions. The authors place continuous emphasis throughout on improving students' ability to read and write proofs, and on developing their critical awareness for spotting common errors in proofs. Concepts are clearly explained and supported with detailed examples, while abundant and diverse exercises provide thorough practice on both routine and more challenging problems. Students will come away with a solid intuition for the types of mathematical reasoning they'll need to apply in later courses and a better understanding of how mathematicians of all kinds approach and solve problems. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.
Publisher: Cengage Learning
ISBN: 9780495562023
Category : Mathematics
Languages : en
Pages : 416
Book Description
A TRANSITION TO ADVANCED MATHEMATICS helps students make the transition from calculus to more proofs-oriented mathematical study. The most successful text of its kind, the 7th edition continues to provide a firm foundation in major concepts needed for continued study and guides students to think and express themselves mathematically to analyze a situation, extract pertinent facts, and draw appropriate conclusions. The authors place continuous emphasis throughout on improving students' ability to read and write proofs, and on developing their critical awareness for spotting common errors in proofs. Concepts are clearly explained and supported with detailed examples, while abundant and diverse exercises provide thorough practice on both routine and more challenging problems. Students will come away with a solid intuition for the types of mathematical reasoning they'll need to apply in later courses and a better understanding of how mathematicians of all kinds approach and solve problems. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.
Mathematical Proofs
Author: Gary Chartrand
Publisher: Pearson
ISBN: 9780321797094
Category : Proof theory
Languages : en
Pages : 0
Book Description
This book prepares students for the more abstract mathematics courses that follow calculus. The author introduces students to proof techniques, analyzing proofs, and writing proofs of their own. It also provides a solid introduction to such topics as relations, functions, and cardinalities of sets, as well as the theoretical aspects of fields such as number theory, abstract algebra, and group theory.
Publisher: Pearson
ISBN: 9780321797094
Category : Proof theory
Languages : en
Pages : 0
Book Description
This book prepares students for the more abstract mathematics courses that follow calculus. The author introduces students to proof techniques, analyzing proofs, and writing proofs of their own. It also provides a solid introduction to such topics as relations, functions, and cardinalities of sets, as well as the theoretical aspects of fields such as number theory, abstract algebra, and group theory.
A Transition to Advanced Mathematics
Author: William Johnston
Publisher: Oxford University Press
ISBN: 0199718660
Category : Mathematics
Languages : en
Pages : 766
Book Description
A Transition to Advanced Mathematics: A Survey Course promotes the goals of a "bridge'' course in mathematics, helping to lead students from courses in the calculus sequence (and other courses where they solve problems that involve mathematical calculations) to theoretical upper-level mathematics courses (where they will have to prove theorems and grapple with mathematical abstractions). The text simultaneously promotes the goals of a ``survey'' course, describing the intriguing questions and insights fundamental to many diverse areas of mathematics, including Logic, Abstract Algebra, Number Theory, Real Analysis, Statistics, Graph Theory, and Complex Analysis. The main objective is "to bring about a deep change in the mathematical character of students -- how they think and their fundamental perspectives on the world of mathematics." This text promotes three major mathematical traits in a meaningful, transformative way: to develop an ability to communicate with precise language, to use mathematically sound reasoning, and to ask probing questions about mathematics. In short, we hope that working through A Transition to Advanced Mathematics encourages students to become mathematicians in the fullest sense of the word. A Transition to Advanced Mathematics has a number of distinctive features that enable this transformational experience. Embedded Questions and Reading Questions illustrate and explain fundamental concepts, allowing students to test their understanding of ideas independent of the exercise sets. The text has extensive, diverse Exercises Sets; with an average of 70 exercises at the end of section, as well as almost 3,000 distinct exercises. In addition, every chapter includes a section that explores an application of the theoretical ideas being studied. We have also interwoven embedded reflections on the history, culture, and philosophy of mathematics throughout the text.
Publisher: Oxford University Press
ISBN: 0199718660
Category : Mathematics
Languages : en
Pages : 766
Book Description
A Transition to Advanced Mathematics: A Survey Course promotes the goals of a "bridge'' course in mathematics, helping to lead students from courses in the calculus sequence (and other courses where they solve problems that involve mathematical calculations) to theoretical upper-level mathematics courses (where they will have to prove theorems and grapple with mathematical abstractions). The text simultaneously promotes the goals of a ``survey'' course, describing the intriguing questions and insights fundamental to many diverse areas of mathematics, including Logic, Abstract Algebra, Number Theory, Real Analysis, Statistics, Graph Theory, and Complex Analysis. The main objective is "to bring about a deep change in the mathematical character of students -- how they think and their fundamental perspectives on the world of mathematics." This text promotes three major mathematical traits in a meaningful, transformative way: to develop an ability to communicate with precise language, to use mathematically sound reasoning, and to ask probing questions about mathematics. In short, we hope that working through A Transition to Advanced Mathematics encourages students to become mathematicians in the fullest sense of the word. A Transition to Advanced Mathematics has a number of distinctive features that enable this transformational experience. Embedded Questions and Reading Questions illustrate and explain fundamental concepts, allowing students to test their understanding of ideas independent of the exercise sets. The text has extensive, diverse Exercises Sets; with an average of 70 exercises at the end of section, as well as almost 3,000 distinct exercises. In addition, every chapter includes a section that explores an application of the theoretical ideas being studied. We have also interwoven embedded reflections on the history, culture, and philosophy of mathematics throughout the text.
A Discrete Transition to Advanced Mathematics
Author: Bettina Richmond
Publisher: American Mathematical Soc.
ISBN: 0821847899
Category : Mathematics
Languages : en
Pages : 434
Book Description
As the title indicates, this book is intended for courses aimed at bridging the gap between lower-level mathematics and advanced mathematics. The text provides a careful introduction to techniques for writing proofs and a logical development of topics based on intuitive understanding of concepts. The authors utilize a clear writing style and a wealth of examples to develop an understanding of discrete mathematics and critical thinking skills. While including many traditional topics, the text offers innovative material throughout. Surprising results are used to motivate the reader. The last three chapters address topics such as continued fractions, infinite arithmetic, and the interplay among Fibonacci numbers, Pascal's triangle, and the golden ratio, and may be used for independent reading assignments. The treatment of sequences may be used to introduce epsilon-delta proofs. The selection of topics provides flexibility for the instructor in a course designed to spark the interest of students through exciting material while preparing them for subsequent proof-based courses.
Publisher: American Mathematical Soc.
ISBN: 0821847899
Category : Mathematics
Languages : en
Pages : 434
Book Description
As the title indicates, this book is intended for courses aimed at bridging the gap between lower-level mathematics and advanced mathematics. The text provides a careful introduction to techniques for writing proofs and a logical development of topics based on intuitive understanding of concepts. The authors utilize a clear writing style and a wealth of examples to develop an understanding of discrete mathematics and critical thinking skills. While including many traditional topics, the text offers innovative material throughout. Surprising results are used to motivate the reader. The last three chapters address topics such as continued fractions, infinite arithmetic, and the interplay among Fibonacci numbers, Pascal's triangle, and the golden ratio, and may be used for independent reading assignments. The treatment of sequences may be used to introduce epsilon-delta proofs. The selection of topics provides flexibility for the instructor in a course designed to spark the interest of students through exciting material while preparing them for subsequent proof-based courses.
Discovering Group Theory
Author: Tony Barnard
Publisher: CRC Press
ISBN: 1315405768
Category : Mathematics
Languages : en
Pages : 286
Book Description
Discovering Group Theory: A Transition to Advanced Mathematics presents the usual material that is found in a first course on groups and then does a bit more. The book is intended for students who find the kind of reasoning in abstract mathematics courses unfamiliar and need extra support in this transition to advanced mathematics. The book gives a number of examples of groups and subgroups, including permutation groups, dihedral groups, and groups of integer residue classes. The book goes on to study cosets and finishes with the first isomorphism theorem. Very little is assumed as background knowledge on the part of the reader. Some facility in algebraic manipulation is required, and a working knowledge of some of the properties of integers, such as knowing how to factorize integers into prime factors. The book aims to help students with the transition from concrete to abstract mathematical thinking.
Publisher: CRC Press
ISBN: 1315405768
Category : Mathematics
Languages : en
Pages : 286
Book Description
Discovering Group Theory: A Transition to Advanced Mathematics presents the usual material that is found in a first course on groups and then does a bit more. The book is intended for students who find the kind of reasoning in abstract mathematics courses unfamiliar and need extra support in this transition to advanced mathematics. The book gives a number of examples of groups and subgroups, including permutation groups, dihedral groups, and groups of integer residue classes. The book goes on to study cosets and finishes with the first isomorphism theorem. Very little is assumed as background knowledge on the part of the reader. Some facility in algebraic manipulation is required, and a working knowledge of some of the properties of integers, such as knowing how to factorize integers into prime factors. The book aims to help students with the transition from concrete to abstract mathematical thinking.
Advanced Mathematics
Author: Stanley J. Farlow
Publisher: John Wiley & Sons
ISBN: 1119563488
Category : Mathematics
Languages : en
Pages : 475
Book Description
Provides a smooth and pleasant transition from first-year calculus to upper-level mathematics courses in real analysis, abstract algebra and number theory Most universities require students majoring in mathematics to take a “transition to higher math” course that introduces mathematical proofs and more rigorous thinking. Such courses help students be prepared for higher-level mathematics course from their onset. Advanced Mathematics: A Transitional Reference provides a “crash course” in beginning pure mathematics, offering instruction on a blendof inductive and deductive reasoning. By avoiding outdated methods and countless pages of theorems and proofs, this innovative textbook prompts students to think about the ideas presented in an enjoyable, constructive setting. Clear and concise chapters cover all the essential topics students need to transition from the "rote-orientated" courses of calculus to the more rigorous "proof-orientated” advanced mathematics courses. Topics include sentential and predicate calculus, mathematical induction, sets and counting, complex numbers, point-set topology, and symmetries, abstract groups, rings, and fields. Each section contains numerous problems for students of various interests and abilities. Ideally suited for a one-semester course, this book: Introduces students to mathematical proofs and rigorous thinking Provides thoroughly class-tested material from the authors own course in transitioning to higher math Strengthens the mathematical thought process of the reader Includes informative sidebars, historical notes, and plentiful graphics Offers a companion website to access a supplemental solutions manual for instructors Advanced Mathematics: A Transitional Reference is a valuable guide for undergraduate students who have taken courses in calculus, differential equations, or linear algebra, but may not be prepared for the more advanced courses of real analysis, abstract algebra, and number theory that await them. This text is also useful for scientists, engineers, and others seeking to refresh their skills in advanced math.
Publisher: John Wiley & Sons
ISBN: 1119563488
Category : Mathematics
Languages : en
Pages : 475
Book Description
Provides a smooth and pleasant transition from first-year calculus to upper-level mathematics courses in real analysis, abstract algebra and number theory Most universities require students majoring in mathematics to take a “transition to higher math” course that introduces mathematical proofs and more rigorous thinking. Such courses help students be prepared for higher-level mathematics course from their onset. Advanced Mathematics: A Transitional Reference provides a “crash course” in beginning pure mathematics, offering instruction on a blendof inductive and deductive reasoning. By avoiding outdated methods and countless pages of theorems and proofs, this innovative textbook prompts students to think about the ideas presented in an enjoyable, constructive setting. Clear and concise chapters cover all the essential topics students need to transition from the "rote-orientated" courses of calculus to the more rigorous "proof-orientated” advanced mathematics courses. Topics include sentential and predicate calculus, mathematical induction, sets and counting, complex numbers, point-set topology, and symmetries, abstract groups, rings, and fields. Each section contains numerous problems for students of various interests and abilities. Ideally suited for a one-semester course, this book: Introduces students to mathematical proofs and rigorous thinking Provides thoroughly class-tested material from the authors own course in transitioning to higher math Strengthens the mathematical thought process of the reader Includes informative sidebars, historical notes, and plentiful graphics Offers a companion website to access a supplemental solutions manual for instructors Advanced Mathematics: A Transitional Reference is a valuable guide for undergraduate students who have taken courses in calculus, differential equations, or linear algebra, but may not be prepared for the more advanced courses of real analysis, abstract algebra, and number theory that await them. This text is also useful for scientists, engineers, and others seeking to refresh their skills in advanced math.
A Transition to Proof
Author: Neil R. Nicholson
Publisher: CRC Press
ISBN: 0429522002
Category : Mathematics
Languages : en
Pages : 465
Book Description
A Transition to Proof: An Introduction to Advanced Mathematics describes writing proofs as a creative process. There is a lot that goes into creating a mathematical proof before writing it. Ample discussion of how to figure out the "nuts and bolts'" of the proof takes place: thought processes, scratch work and ways to attack problems. Readers will learn not just how to write mathematics but also how to do mathematics. They will then learn to communicate mathematics effectively. The text emphasizes the creativity, intuition, and correct mathematical exposition as it prepares students for courses beyond the calculus sequence. The author urges readers to work to define their mathematical voices. This is done with style tips and strict "mathematical do’s and don’ts", which are presented in eye-catching "text-boxes" throughout the text. The end result enables readers to fully understand the fundamentals of proof. Features: The text is aimed at transition courses preparing students to take analysis Promotes creativity, intuition, and accuracy in exposition The language of proof is established in the first two chapters, which cover logic and set theory Includes chapters on cardinality and introductory topology
Publisher: CRC Press
ISBN: 0429522002
Category : Mathematics
Languages : en
Pages : 465
Book Description
A Transition to Proof: An Introduction to Advanced Mathematics describes writing proofs as a creative process. There is a lot that goes into creating a mathematical proof before writing it. Ample discussion of how to figure out the "nuts and bolts'" of the proof takes place: thought processes, scratch work and ways to attack problems. Readers will learn not just how to write mathematics but also how to do mathematics. They will then learn to communicate mathematics effectively. The text emphasizes the creativity, intuition, and correct mathematical exposition as it prepares students for courses beyond the calculus sequence. The author urges readers to work to define their mathematical voices. This is done with style tips and strict "mathematical do’s and don’ts", which are presented in eye-catching "text-boxes" throughout the text. The end result enables readers to fully understand the fundamentals of proof. Features: The text is aimed at transition courses preparing students to take analysis Promotes creativity, intuition, and accuracy in exposition The language of proof is established in the first two chapters, which cover logic and set theory Includes chapters on cardinality and introductory topology
Elementary Point-Set Topology
Author: Andre L. Yandl
Publisher: Courier Dover Publications
ISBN: 0486811018
Category : Mathematics
Languages : en
Pages : 260
Book Description
In addition to serving as an introduction to the basics of point-set topology, this text bridges the gap between the elementary calculus sequence and higher-level mathematics courses. The versatile, original approach focuses on learning to read and write proofs rather than covering advanced topics. Based on lecture notes that were developed over many years at The University of Seattle, the treatment is geared toward undergraduate math majors and suitable for a variety of introductory courses. Starting with elementary concepts in logic and basic techniques of proof writing, the text defines topological and metric spaces and surveys continuity and homeomorphism. Additional subjects include product spaces, connectedness, and compactness. The final chapter illustrates topology's use in other branches of mathematics with proofs of the fundamental theorem of algebra and of Picard's existence theorem for differential equations. "This is a back-to-basics introductory text in point-set topology that can double as a transition to proofs course. The writing is very clear, not too concise or too wordy. Each section of the book ends with a large number of exercises. The optional first chapter covers set theory and proof methods; if the students already know this material you can start with Chapter 2 to present a straight topology course, otherwise the book can be used as an introduction to proofs course also." — Mathematical Association of America
Publisher: Courier Dover Publications
ISBN: 0486811018
Category : Mathematics
Languages : en
Pages : 260
Book Description
In addition to serving as an introduction to the basics of point-set topology, this text bridges the gap between the elementary calculus sequence and higher-level mathematics courses. The versatile, original approach focuses on learning to read and write proofs rather than covering advanced topics. Based on lecture notes that were developed over many years at The University of Seattle, the treatment is geared toward undergraduate math majors and suitable for a variety of introductory courses. Starting with elementary concepts in logic and basic techniques of proof writing, the text defines topological and metric spaces and surveys continuity and homeomorphism. Additional subjects include product spaces, connectedness, and compactness. The final chapter illustrates topology's use in other branches of mathematics with proofs of the fundamental theorem of algebra and of Picard's existence theorem for differential equations. "This is a back-to-basics introductory text in point-set topology that can double as a transition to proofs course. The writing is very clear, not too concise or too wordy. Each section of the book ends with a large number of exercises. The optional first chapter covers set theory and proof methods; if the students already know this material you can start with Chapter 2 to present a straight topology course, otherwise the book can be used as an introduction to proofs course also." — Mathematical Association of America
Transition to Advanced Mathematics
Author: Danilo R. Diedrichs
Publisher: CRC Press
ISBN: 1000581861
Category : Mathematics
Languages : en
Pages : 704
Book Description
This unique and contemporary text not only offers an introduction to proofs with a view towards algebra and analysis, a standard fare for a transition course, but also presents practical skills for upper-level mathematics coursework and exposes undergraduate students to the context and culture of contemporary mathematics. The authors implement the practice recommended by the Committee on the Undergraduate Program in Mathematics (CUPM) curriculum guide, that a modern mathematics program should include cognitive goals and offer a broad perspective of the discipline. Part I offers: An introduction to logic and set theory. Proof methods as a vehicle leading to topics useful for analysis, topology, algebra, and probability. Many illustrated examples, often drawing on what students already know, that minimize conversation about "doing proofs." An appendix that provides an annotated rubric with feedback codes for assessing proof writing. Part II presents the context and culture aspects of the transition experience, including: 21st century mathematics, including the current mathematical culture, vocations, and careers. History and philosophical issues in mathematics. Approaching, reading, and learning from journal articles and other primary sources. Mathematical writing and typesetting in LaTeX. Together, these Parts provide a complete introduction to modern mathematics, both in content and practice. Table of Contents Part I - Introduction to Proofs Logic and Sets Arguments and Proofs Functions Properties of the Integers Counting and Combinatorial Arguments Relations Part II - Culture, History, Reading, and Writing Mathematical Culture, Vocation, and Careers History and Philosophy of Mathematics Reading and Researching Mathematics Writing and Presenting Mathematics Appendix A. Rubric for Assessing Proofs Appendix B. Index of Theorems and Definitions from Calculus and Linear Algebra Bibliography Index Biographies Danilo R. Diedrichs is an Associate Professor of Mathematics at Wheaton College in Illinois. Raised and educated in Switzerland, he holds a PhD in applied mathematical and computational sciences from the University of Iowa, as well as a master’s degree in civil engineering from the Ecole Polytechnique Fédérale in Lausanne, Switzerland. His research interests are in dynamical systems modeling applied to biology, ecology, and epidemiology. Stephen Lovett is a Professor of Mathematics at Wheaton College in Illinois. He holds a PhD in representation theory from Northeastern University. His other books include Abstract Algebra: Structures and Applications (2015), Differential Geometry of Curves and Surfaces, with Tom Banchoff (2016), and Differential Geometry of Manifolds (2019).
Publisher: CRC Press
ISBN: 1000581861
Category : Mathematics
Languages : en
Pages : 704
Book Description
This unique and contemporary text not only offers an introduction to proofs with a view towards algebra and analysis, a standard fare for a transition course, but also presents practical skills for upper-level mathematics coursework and exposes undergraduate students to the context and culture of contemporary mathematics. The authors implement the practice recommended by the Committee on the Undergraduate Program in Mathematics (CUPM) curriculum guide, that a modern mathematics program should include cognitive goals and offer a broad perspective of the discipline. Part I offers: An introduction to logic and set theory. Proof methods as a vehicle leading to topics useful for analysis, topology, algebra, and probability. Many illustrated examples, often drawing on what students already know, that minimize conversation about "doing proofs." An appendix that provides an annotated rubric with feedback codes for assessing proof writing. Part II presents the context and culture aspects of the transition experience, including: 21st century mathematics, including the current mathematical culture, vocations, and careers. History and philosophical issues in mathematics. Approaching, reading, and learning from journal articles and other primary sources. Mathematical writing and typesetting in LaTeX. Together, these Parts provide a complete introduction to modern mathematics, both in content and practice. Table of Contents Part I - Introduction to Proofs Logic and Sets Arguments and Proofs Functions Properties of the Integers Counting and Combinatorial Arguments Relations Part II - Culture, History, Reading, and Writing Mathematical Culture, Vocation, and Careers History and Philosophy of Mathematics Reading and Researching Mathematics Writing and Presenting Mathematics Appendix A. Rubric for Assessing Proofs Appendix B. Index of Theorems and Definitions from Calculus and Linear Algebra Bibliography Index Biographies Danilo R. Diedrichs is an Associate Professor of Mathematics at Wheaton College in Illinois. Raised and educated in Switzerland, he holds a PhD in applied mathematical and computational sciences from the University of Iowa, as well as a master’s degree in civil engineering from the Ecole Polytechnique Fédérale in Lausanne, Switzerland. His research interests are in dynamical systems modeling applied to biology, ecology, and epidemiology. Stephen Lovett is a Professor of Mathematics at Wheaton College in Illinois. He holds a PhD in representation theory from Northeastern University. His other books include Abstract Algebra: Structures and Applications (2015), Differential Geometry of Curves and Surfaces, with Tom Banchoff (2016), and Differential Geometry of Manifolds (2019).
Proofs and Fundamentals
Author: Ethan D. Bloch
Publisher: Springer Science & Business Media
ISBN: 1441971270
Category : Mathematics
Languages : en
Pages : 378
Book Description
“Proofs and Fundamentals: A First Course in Abstract Mathematics” 2nd edition is designed as a "transition" course to introduce undergraduates to the writing of rigorous mathematical proofs, and to such fundamental mathematical ideas as sets, functions, relations, and cardinality. The text serves as a bridge between computational courses such as calculus, and more theoretical, proofs-oriented courses such as linear algebra, abstract algebra and real analysis. This 3-part work carefully balances Proofs, Fundamentals, and Extras. Part 1 presents logic and basic proof techniques; Part 2 thoroughly covers fundamental material such as sets, functions and relations; and Part 3 introduces a variety of extra topics such as groups, combinatorics and sequences. A gentle, friendly style is used, in which motivation and informal discussion play a key role, and yet high standards in rigor and in writing are never compromised. New to the second edition: 1) A new section about the foundations of set theory has been added at the end of the chapter about sets. This section includes a very informal discussion of the Zermelo– Fraenkel Axioms for set theory. We do not make use of these axioms subsequently in the text, but it is valuable for any mathematician to be aware that an axiomatic basis for set theory exists. Also included in this new section is a slightly expanded discussion of the Axiom of Choice, and new discussion of Zorn's Lemma, which is used later in the text. 2) The chapter about the cardinality of sets has been rearranged and expanded. There is a new section at the start of the chapter that summarizes various properties of the set of natural numbers; these properties play important roles subsequently in the chapter. The sections on induction and recursion have been slightly expanded, and have been relocated to an earlier place in the chapter (following the new section), both because they are more concrete than the material found in the other sections of the chapter, and because ideas from the sections on induction and recursion are used in the other sections. Next comes the section on the cardinality of sets (which was originally the first section of the chapter); this section gained proofs of the Schroeder–Bernstein theorem and the Trichotomy Law for Sets, and lost most of the material about finite and countable sets, which has now been moved to a new section devoted to those two types of sets. The chapter concludes with the section on the cardinality of the number systems. 3) The chapter on the construction of the natural numbers, integers and rational numbers from the Peano Postulates was removed entirely. That material was originally included to provide the needed background about the number systems, particularly for the discussion of the cardinality of sets, but it was always somewhat out of place given the level and scope of this text. The background material about the natural numbers needed for the cardinality of sets has now been summarized in a new section at the start of that chapter, making the chapter both self-contained and more accessible than it previously was. 4) The section on families of sets has been thoroughly revised, with the focus being on families of sets in general, not necessarily thought of as indexed. 5) A new section about the convergence of sequences has been added to the chapter on selected topics. This new section, which treats a topic from real analysis, adds some diversity to the chapter, which had hitherto contained selected topics of only an algebraic or combinatorial nature. 6) A new section called ``You Are the Professor'' has been added to the end of the last chapter. This new section, which includes a number of attempted proofs taken from actual homework exercises submitted by students, offers the reader the opportunity to solidify her facility for writing proofs by critiquing these submissions as if she were the instructor for the course. 7) All known errors have been corrected. 8) Many minor adjustments of wording have been made throughout the text, with the hope of improving the exposition.
Publisher: Springer Science & Business Media
ISBN: 1441971270
Category : Mathematics
Languages : en
Pages : 378
Book Description
“Proofs and Fundamentals: A First Course in Abstract Mathematics” 2nd edition is designed as a "transition" course to introduce undergraduates to the writing of rigorous mathematical proofs, and to such fundamental mathematical ideas as sets, functions, relations, and cardinality. The text serves as a bridge between computational courses such as calculus, and more theoretical, proofs-oriented courses such as linear algebra, abstract algebra and real analysis. This 3-part work carefully balances Proofs, Fundamentals, and Extras. Part 1 presents logic and basic proof techniques; Part 2 thoroughly covers fundamental material such as sets, functions and relations; and Part 3 introduces a variety of extra topics such as groups, combinatorics and sequences. A gentle, friendly style is used, in which motivation and informal discussion play a key role, and yet high standards in rigor and in writing are never compromised. New to the second edition: 1) A new section about the foundations of set theory has been added at the end of the chapter about sets. This section includes a very informal discussion of the Zermelo– Fraenkel Axioms for set theory. We do not make use of these axioms subsequently in the text, but it is valuable for any mathematician to be aware that an axiomatic basis for set theory exists. Also included in this new section is a slightly expanded discussion of the Axiom of Choice, and new discussion of Zorn's Lemma, which is used later in the text. 2) The chapter about the cardinality of sets has been rearranged and expanded. There is a new section at the start of the chapter that summarizes various properties of the set of natural numbers; these properties play important roles subsequently in the chapter. The sections on induction and recursion have been slightly expanded, and have been relocated to an earlier place in the chapter (following the new section), both because they are more concrete than the material found in the other sections of the chapter, and because ideas from the sections on induction and recursion are used in the other sections. Next comes the section on the cardinality of sets (which was originally the first section of the chapter); this section gained proofs of the Schroeder–Bernstein theorem and the Trichotomy Law for Sets, and lost most of the material about finite and countable sets, which has now been moved to a new section devoted to those two types of sets. The chapter concludes with the section on the cardinality of the number systems. 3) The chapter on the construction of the natural numbers, integers and rational numbers from the Peano Postulates was removed entirely. That material was originally included to provide the needed background about the number systems, particularly for the discussion of the cardinality of sets, but it was always somewhat out of place given the level and scope of this text. The background material about the natural numbers needed for the cardinality of sets has now been summarized in a new section at the start of that chapter, making the chapter both self-contained and more accessible than it previously was. 4) The section on families of sets has been thoroughly revised, with the focus being on families of sets in general, not necessarily thought of as indexed. 5) A new section about the convergence of sequences has been added to the chapter on selected topics. This new section, which treats a topic from real analysis, adds some diversity to the chapter, which had hitherto contained selected topics of only an algebraic or combinatorial nature. 6) A new section called ``You Are the Professor'' has been added to the end of the last chapter. This new section, which includes a number of attempted proofs taken from actual homework exercises submitted by students, offers the reader the opportunity to solidify her facility for writing proofs by critiquing these submissions as if she were the instructor for the course. 7) All known errors have been corrected. 8) Many minor adjustments of wording have been made throughout the text, with the hope of improving the exposition.