Author: Kuo-Nan Liou
Publisher: Cambridge University Press
ISBN: 0521889162
Category : Science
Languages : en
Pages : 461
Book Description
This volume outlines the fundamentals and applications of light scattering, absorption and polarization processes involving ice crystals.
Light Scattering by Ice Crystals
Author: Kuo-Nan Liou
Publisher: Cambridge University Press
ISBN: 0521889162
Category : Science
Languages : en
Pages : 461
Book Description
This volume outlines the fundamentals and applications of light scattering, absorption and polarization processes involving ice crystals.
Publisher: Cambridge University Press
ISBN: 0521889162
Category : Science
Languages : en
Pages : 461
Book Description
This volume outlines the fundamentals and applications of light scattering, absorption and polarization processes involving ice crystals.
Mixed-Phase Clouds
Author: Constantin Andronache
Publisher: Elsevier
ISBN: 012810550X
Category : Science
Languages : en
Pages : 302
Book Description
Mixed-Phase Clouds: Observations and Modeling presents advanced research topics on mixed-phase clouds. As the societal impacts of extreme weather and its forecasting grow, there is a continuous need to refine atmospheric observations, techniques and numerical models. Understanding the role of clouds in the atmosphere is increasingly vital for current applications, such as prediction and prevention of aircraft icing, weather modification, and the assessment of the effects of cloud phase partition in climate models. This book provides the essential information needed to address these problems with a focus on current observations, simulations and applications. - Provides in-depth knowledge and simulation of mixed-phase clouds over many regions of Earth, explaining their role in weather and climate - Features current research examples and case studies, including those on advanced research methods from authors with experience in both academia and the industry - Discusses the latest advances in this subject area, providing the reader with access to best practices for remote sensing and numerical modeling
Publisher: Elsevier
ISBN: 012810550X
Category : Science
Languages : en
Pages : 302
Book Description
Mixed-Phase Clouds: Observations and Modeling presents advanced research topics on mixed-phase clouds. As the societal impacts of extreme weather and its forecasting grow, there is a continuous need to refine atmospheric observations, techniques and numerical models. Understanding the role of clouds in the atmosphere is increasingly vital for current applications, such as prediction and prevention of aircraft icing, weather modification, and the assessment of the effects of cloud phase partition in climate models. This book provides the essential information needed to address these problems with a focus on current observations, simulations and applications. - Provides in-depth knowledge and simulation of mixed-phase clouds over many regions of Earth, explaining their role in weather and climate - Features current research examples and case studies, including those on advanced research methods from authors with experience in both academia and the industry - Discusses the latest advances in this subject area, providing the reader with access to best practices for remote sensing and numerical modeling
Storm and Cloud Dynamics
Author: William R. Cotton
Publisher: Academic Press
ISBN: 0080916651
Category : Science
Languages : en
Pages : 826
Book Description
Storm and Cloud Dynamics focuses on the dynamics of clouds and of precipitating mesoscale meteorological systems. Clouds and precipitating mesoscale systems represent some of the most important and scientifically exciting weather systems in the world. These are the systems that produce torrential rains, severe winds including downburst and tornadoes, hail, thunder and lightning, and major snow storms. Forecasting such storms represents a major challenge since they are too small to be adequately resolved by conventional observing networks and numerical prediction models. - Provides a complete treatment of clouds integrating the analysis of air motions with cloud structure, microphysics, and precipitation mechanics - Describes and explains the basic types of clouds and cloud systems that occur in the atmosphere-fog, stratus, stratocumulus, altocumulus, altostratus, cirrus, thunderstorms, tornadoes, waterspouts, orographically induced clouds, mesoscale convection complexes, hurricanes, fronts, and extratropical cyclones - Summarizes the fundamentals, both observational and theoretical, of atmospheric dynamics, thermodynamics, cloud microphysics, and radar meteorology, allowing each type of cloud to be examined in depth - Integrates the latest field observations, numerical model simulations, and theory - Supplies a theoretical treatment suitable for the advanced undergraduate or graduate level, as well as post-graduate
Publisher: Academic Press
ISBN: 0080916651
Category : Science
Languages : en
Pages : 826
Book Description
Storm and Cloud Dynamics focuses on the dynamics of clouds and of precipitating mesoscale meteorological systems. Clouds and precipitating mesoscale systems represent some of the most important and scientifically exciting weather systems in the world. These are the systems that produce torrential rains, severe winds including downburst and tornadoes, hail, thunder and lightning, and major snow storms. Forecasting such storms represents a major challenge since they are too small to be adequately resolved by conventional observing networks and numerical prediction models. - Provides a complete treatment of clouds integrating the analysis of air motions with cloud structure, microphysics, and precipitation mechanics - Describes and explains the basic types of clouds and cloud systems that occur in the atmosphere-fog, stratus, stratocumulus, altocumulus, altostratus, cirrus, thunderstorms, tornadoes, waterspouts, orographically induced clouds, mesoscale convection complexes, hurricanes, fronts, and extratropical cyclones - Summarizes the fundamentals, both observational and theoretical, of atmospheric dynamics, thermodynamics, cloud microphysics, and radar meteorology, allowing each type of cloud to be examined in depth - Integrates the latest field observations, numerical model simulations, and theory - Supplies a theoretical treatment suitable for the advanced undergraduate or graduate level, as well as post-graduate
Snow Crystals
Author: Kenneth G. Libbrecht
Publisher: Princeton University Press
ISBN: 0691200378
Category : Science
Languages : en
Pages : 456
Book Description
"Despite substantial, cross-disciplinary interest in the subject as a scientific case study, surprisingly little has been written on the science of snowflakes and their formation. For materials scientists, snowflakes constitute archetypal examples of crystal growth; for chemists, the site of complex molecular dynamics at the ice surface. Physicists can learn from snowflake symmetry and self-assembly; geologists study snow as mineral crystals; and biologists can even gain insight into the creation of shape and order in organisms. In the humble snowflake are condensed many of the processes-many of them still not fully understood-that govern the organization of classical systems at all levels of the natural world. This book by Kenneth Libbrecht-inarguably the world's foremost expert on the subject-will be the authoritative text on the science of snow crystals. It will cover all of the physical processes that govern the life of a snowflake, including how snowflakes grow and why they have the shapes they do. It will also outline techniques for creating and experimenting with snow crystals, both with computer models and in the lab. Featuring hundreds of color illustrations, the book will be comprehensive and is sure to become definitive resource for researchers for years, if not decades, to come"--
Publisher: Princeton University Press
ISBN: 0691200378
Category : Science
Languages : en
Pages : 456
Book Description
"Despite substantial, cross-disciplinary interest in the subject as a scientific case study, surprisingly little has been written on the science of snowflakes and their formation. For materials scientists, snowflakes constitute archetypal examples of crystal growth; for chemists, the site of complex molecular dynamics at the ice surface. Physicists can learn from snowflake symmetry and self-assembly; geologists study snow as mineral crystals; and biologists can even gain insight into the creation of shape and order in organisms. In the humble snowflake are condensed many of the processes-many of them still not fully understood-that govern the organization of classical systems at all levels of the natural world. This book by Kenneth Libbrecht-inarguably the world's foremost expert on the subject-will be the authoritative text on the science of snow crystals. It will cover all of the physical processes that govern the life of a snowflake, including how snowflakes grow and why they have the shapes they do. It will also outline techniques for creating and experimenting with snow crystals, both with computer models and in the lab. Featuring hundreds of color illustrations, the book will be comprehensive and is sure to become definitive resource for researchers for years, if not decades, to come"--
Physics of Ice
Author: Victor F. Petrenko
Publisher: OUP Oxford
ISBN: 0191581348
Category : Science
Languages : en
Pages : 390
Book Description
Ice is one of the most abundant and environmentally important materials on Earth, and its unique and intriguing physical properties present fascinating areas of study for a wide variety of researchers. This book is about the physics of ice, by which is meant the properties of the material itself and the ways in which these properties are interpreted in terms of water molecules and crystalline structure. Although ice has a simple crystal structure its hydrogen bonding results in unique properties, which continue to be the subject of active research. In this book the physical principles underlying the properties of ice are carefully developed at a level aimed at pure and applied researchers in the field. Important topics like current understandings of the electrical, mechanical, and surface properties, and the occurrence of many different crystalline phases are developed in a coherent way for the first time. An extensive reference list and numerous illustrations add to the usefulness and readability of the text.
Publisher: OUP Oxford
ISBN: 0191581348
Category : Science
Languages : en
Pages : 390
Book Description
Ice is one of the most abundant and environmentally important materials on Earth, and its unique and intriguing physical properties present fascinating areas of study for a wide variety of researchers. This book is about the physics of ice, by which is meant the properties of the material itself and the ways in which these properties are interpreted in terms of water molecules and crystalline structure. Although ice has a simple crystal structure its hydrogen bonding results in unique properties, which continue to be the subject of active research. In this book the physical principles underlying the properties of ice are carefully developed at a level aimed at pure and applied researchers in the field. Important topics like current understandings of the electrical, mechanical, and surface properties, and the occurrence of many different crystalline phases are developed in a coherent way for the first time. An extensive reference list and numerous illustrations add to the usefulness and readability of the text.
Formation of Snow Crystals
Author: Ukichirō Nakaya
Publisher:
ISBN:
Category : Snowflakes
Languages : en
Pages : 16
Book Description
Publisher:
ISBN:
Category : Snowflakes
Languages : en
Pages : 16
Book Description
Clouds, Chemistry and Climate
Author: Paul J. Crutzen
Publisher: Springer Science & Business Media
ISBN: 364261051X
Category : Science
Languages : en
Pages : 337
Book Description
The objective of this NATO Advanced Research Workshop was to discuss our current understanding of the role of clouds in climate and chemistry. The range of topics dis cussed during the workshop included: modeling of clouds in GCMs; observations of the cloud micro physical properties; the water vapor cycle; troposphere-stratosphere exchange; role of in-cloud transport in tropospheric ozone; regulation of current and paleo climate by clouds; and anthropogenic sulfate aerosols and modification of cloud properties. The essence of the discussions is captured in the accompanying summary by the rapporteurs and the chapters by some of the speakers. The underlying message is that significant progress has been made, resulting in exciting new developments in our perception of the role of clouds in the global system . .. The tropical convective-cirrus cloud systems emerge as a major influence on the climate system. Micro physical processes, such as the rate of precipitation and re evaporation of ice particles, seem to regulate the large scale vertical distribution of water vapor which is the dominant greenhouse gas. Water vapor data collected during the Central Equatorial Pacific Experiment (CEPEX), document the large moistening effect of deep convection on scales of thousands of kilometers. A major chemical finding in the same region was the observation of extremely low ozone 8 volume mixing ratios of less than 10- in the entire troposphere of the central equatorial Pacific extending over a distance of about 2000 km. This finding establishes the Pacific as a major chemical sink region for tropospheric ozone.
Publisher: Springer Science & Business Media
ISBN: 364261051X
Category : Science
Languages : en
Pages : 337
Book Description
The objective of this NATO Advanced Research Workshop was to discuss our current understanding of the role of clouds in climate and chemistry. The range of topics dis cussed during the workshop included: modeling of clouds in GCMs; observations of the cloud micro physical properties; the water vapor cycle; troposphere-stratosphere exchange; role of in-cloud transport in tropospheric ozone; regulation of current and paleo climate by clouds; and anthropogenic sulfate aerosols and modification of cloud properties. The essence of the discussions is captured in the accompanying summary by the rapporteurs and the chapters by some of the speakers. The underlying message is that significant progress has been made, resulting in exciting new developments in our perception of the role of clouds in the global system . .. The tropical convective-cirrus cloud systems emerge as a major influence on the climate system. Micro physical processes, such as the rate of precipitation and re evaporation of ice particles, seem to regulate the large scale vertical distribution of water vapor which is the dominant greenhouse gas. Water vapor data collected during the Central Equatorial Pacific Experiment (CEPEX), document the large moistening effect of deep convection on scales of thousands of kilometers. A major chemical finding in the same region was the observation of extremely low ozone 8 volume mixing ratios of less than 10- in the entire troposphere of the central equatorial Pacific extending over a distance of about 2000 km. This finding establishes the Pacific as a major chemical sink region for tropospheric ozone.
Snow Crystals
Author: Wilson Alwyn Bentley
Publisher:
ISBN:
Category : Crystallization
Languages : en
Pages : 242
Book Description
Publisher:
ISBN:
Category : Crystallization
Languages : en
Pages : 242
Book Description
Radar Polarimetry for Weather Observations
Author: Alexander V. Ryzhkov
Publisher: Springer
ISBN: 3030050939
Category : Science
Languages : en
Pages : 497
Book Description
This monograph offers a wide array of contemporary information on weather radar polarimetry and its applications. The book tightly connects the microphysical processes responsible for the development and evolution of the clouds’ bulk physical properties to the polarimetric variables, and contains the procedures on how to simulate realistic polarimetric variables. With up-to-date polarimetric methodologies and applications, the book will appeal to practicing radar meteorologists, hydrologists, microphysicists, and modelers who are interested in the bulk properties of hydrometeors and quantification of these with the goals to improve precipitation measurements, understanding of precipitation processes, or model forecasts.
Publisher: Springer
ISBN: 3030050939
Category : Science
Languages : en
Pages : 497
Book Description
This monograph offers a wide array of contemporary information on weather radar polarimetry and its applications. The book tightly connects the microphysical processes responsible for the development and evolution of the clouds’ bulk physical properties to the polarimetric variables, and contains the procedures on how to simulate realistic polarimetric variables. With up-to-date polarimetric methodologies and applications, the book will appeal to practicing radar meteorologists, hydrologists, microphysicists, and modelers who are interested in the bulk properties of hydrometeors and quantification of these with the goals to improve precipitation measurements, understanding of precipitation processes, or model forecasts.
Atmospheric Physics
Author: Ulrich Schumann
Publisher: Springer Science & Business Media
ISBN: 3642301835
Category : Science
Languages : en
Pages : 884
Book Description
On the occasion of the 50th anniversary of the Institute of Atmospheric Physics of the German Aerospace Center (DLR), this book presents more than 50 chapters highlighting results of the institute’s research. The book provides an up-to-date, in-depth survey across the entire field of atmospheric science, including atmospheric dynamics, radiation, cloud physics, chemistry, climate, numerical simulation, remote sensing, instruments and measurements, as well as atmospheric acoustics. The authors have provided a readily comprehensible and self-contained presentation of the complex field of atmospheric science. The topics are of direct relevance for aerospace science and technology. Future research challenges are identified.
Publisher: Springer Science & Business Media
ISBN: 3642301835
Category : Science
Languages : en
Pages : 884
Book Description
On the occasion of the 50th anniversary of the Institute of Atmospheric Physics of the German Aerospace Center (DLR), this book presents more than 50 chapters highlighting results of the institute’s research. The book provides an up-to-date, in-depth survey across the entire field of atmospheric science, including atmospheric dynamics, radiation, cloud physics, chemistry, climate, numerical simulation, remote sensing, instruments and measurements, as well as atmospheric acoustics. The authors have provided a readily comprehensible and self-contained presentation of the complex field of atmospheric science. The topics are of direct relevance for aerospace science and technology. Future research challenges are identified.