A Study on Neutrosophic Zero Rings

A Study on Neutrosophic Zero Rings PDF Author: T.Chalapathi
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 11

Get Book Here

Book Description
Abstract algebra is largely concerned with the study of abstract sets endowed with one, or, more binary operations along with few axioms. In this paper, we consider one of the basic algebraic structures known as a ring, called a classical ring.

A Study on Neutrosophic Zero Rings

A Study on Neutrosophic Zero Rings PDF Author: T.Chalapathi
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 11

Get Book Here

Book Description
Abstract algebra is largely concerned with the study of abstract sets endowed with one, or, more binary operations along with few axioms. In this paper, we consider one of the basic algebraic structures known as a ring, called a classical ring.

Neutrosophic Sets and Systems Book Series, Vol. 30, 2019

Neutrosophic Sets and Systems Book Series, Vol. 30, 2019 PDF Author: Florentin Smarandache
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 293

Get Book Here

Book Description
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.

Neutrosophic Sets and Systems, Vol. 30, 2019

Neutrosophic Sets and Systems, Vol. 30, 2019 PDF Author: Florentin Smarandache
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 293

Get Book Here

Book Description
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc.

Neutrosophic Rings

Neutrosophic Rings PDF Author: W. B. Vasantha Kandasamy
Publisher: Infinite Study
ISBN: 1931233209
Category : Mathematics
Languages : en
Pages : 154

Get Book Here

Book Description
Research on algebraic structure of group rings is one of the leading, most sought-after topics in ring theory. The new class of neutrosophic rings defined in this book form a generalization of group rings and semigroup rings.The study of the classes of neutrosophic group neutrosophic rings and S-neutrosophic semigroup neutrosophic rings which form a type of generalization of group rings will throw light on group rings and semigroup rings which are essential substructures of them. A salient feature of this group is the many suggested problems on the new classes of neutrosophic rings, solutions of which will certainly develop some of the still open problems in group rings.Further, neutrosophic matrix rings find applications in neutrosophic models like Neutrosophic Cognitive Maps (NCM), Neutrosophic Relational Maps (NRM), Neutrosophic Bidirectional Memories (NBM) and so on.

Theory on Duplicity of Finite Neutrosophic Rings

Theory on Duplicity of Finite Neutrosophic Rings PDF Author: T. Chalapathi
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 13

Get Book Here

Book Description
This article introduces the notion of duplex elements of the finite rings and corresponding neutrosophic rings. The authors establish duplex ring Dup(R) and neutrosophic duplex ring Dup(R)I)) by way of various illustrations. The tables of different duplicities are constructed to reveal the comparison between rings Dup(Zn), Dup(Dup(Zn)) and Dup(Dup(Dup(Zn ))) for the cyclic ring Zn . The proposed duplicity structures have several algebraic systems with dissimilar consequences. Author’s characterize finite rings with R + R is different from the duplex ring Dup(R). However, this characterization supports that R + R = Dup(R) for some well known rings, namely zero rings and finite fields.

Study on the Development of Neutrosophic Triplet Ring and Neutrosophic Triplet Field

Study on the Development of Neutrosophic Triplet Ring and Neutrosophic Triplet Field PDF Author: Mumtaz Ali
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 11

Get Book Here

Book Description
Rings and fields are significant algebraic structures in algebra and both of them are based on the group structure. In this paper, we attempt to extend the notion of a neutrosophic triplet group to a neutrosophic triplet ring and a neutrosophic triplet field. We introduce a neutrosophic triplet ring and study some of its basic properties. Further, we define the zero divisor, neutrosophic triplet subring, neutrosophic triplet ideal, nilpotent integral neutrosophic triplet domain, and neutrosophic triplet ring homomorphism. Finally, we introduce a neutrosophic triplet field.

Neutrosophic Sets and Systems, Book Series, Vol. 33, 2020. An International Book Series in Information Science and Engineering

Neutrosophic Sets and Systems, Book Series, Vol. 33, 2020. An International Book Series in Information Science and Engineering PDF Author: Florentin Smarandache
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 341

Get Book Here

Book Description
Contributors to current issue (listed in papers’ order): Atena Tahmasbpour Meikola, Arif Mehmood, Wadood Ullah, Said Broumi, Muhammad Imran Khan, Humera Qureshi, Muhammad Ibrar Abbas, Humaira Kalsoom, Fawad Nadeem, T. Chalapathi, L. Madhavi, R. Suresh, S. Palaniammal, Nivetha Martin, Florentin Smarandache, S. A. Edalatpanah, Rafif Alhabib, A. A. Salama, Memet Şahin, Abdullah Kargın, Murat Yücel, Dimacha Dwibrang Mwchahary, Bhimraj Basumatary, R. S. Alghamdi, N. O. Alshehri, Shigui Du, Rui Yong, Jun Ye, Vasantha Kandasamy, Ilanthenral Kandasamy, Muhammad Saeed, Muhammad Saqlain, Asad Mehmood, Khushbakht Naseer, Sonia Yaqoob, Sudipta Gayen, Sripati Jha, Manoranjan Kumar Singh, Ranjan Kumar, Huseyin Kamaci, Shawkat Alkhazaleh, Anas Al-Masarwah, Abd Ghafur Ahmad, Merve Sena Uz, Akbar Rezaei, Mohamed Grida, Rehab Mohamed, Abdelnaser H. Zaid.

Neutrosophic Sets and Systems, Vol. 33, 2020

Neutrosophic Sets and Systems, Vol. 33, 2020 PDF Author: Florentin Smarandache
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 353

Get Book Here

Book Description
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Some articles in this issue: Extension of HyperGraph to n-SuperHyperGraph and to Plithogenic n-SuperHyperGraph, and Extension of HyperAlgebra to n-ary (Classical-/Neutro-/Anti-)HyperAlgebra, Neutrosophic Triplet Partial Bipolar Metric Spaces, The Neutrosophic Triplet of BI-algebras.

Neutrosophic Sets and Systems, vol. 49/2022

Neutrosophic Sets and Systems, vol. 49/2022 PDF Author: Florentin Smarandache
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 611

Get Book Here

Book Description
“Neutrosophic Sets and Systems” has been created for publications on advanced studies in neutrosophy, neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics that started in 1995 and their applications in any field, such as the neutrosophic structures developed in algebra, geometry, topology, etc. Neutrosophy is a new branch of philosophy that studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. This theory considers every notion or idea together with its opposite or negation and with their spectrum of neutralities in between them (i.e. notions or ideas supporting neither nor ). The and ideas together are referred to as . Neutrosophy is a generalization of Hegel's dialectics (the last one is based on and only). According to this theory every idea tends to be neutralized and balanced by and ideas - as a state of equilibrium. In a classical way , , are disjoint two by two. But, since in many cases the borders between notions are vague, imprecise, Sorites, it is possible that , , (and of course) have common parts two by two, or even all three of them as well. Neutrosophic Set and Neutrosophic Logic are generalizations of the fuzzy set and respectively fuzzy logic (especially of intuitionistic fuzzy set and respectively intuitionistic fuzzy logic).

Collected Papers. Volume IX

Collected Papers. Volume IX PDF Author: Florentin Smarandache
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 1008

Get Book Here

Book Description
This ninth volume of Collected Papers includes 87 papers comprising 982 pages on Neutrosophic Theory and its applications in Algebra, written between 2014-2022 by the author alone or in collaboration with the following 81 co-authors (alphabetically ordered) from 19 countries: E.O. Adeleke, A.A.A. Agboola, Ahmed B. Al-Nafee, Ahmed Mostafa Khalil, Akbar Rezaei, S.A. Akinleye, Ali Hassan, Mumtaz Ali, Rajab Ali Borzooei , Assia Bakali, Cenap Özel, Victor Christianto, Chunxin Bo, Rakhal Das, Bijan Davvaz, R. Dhavaseelan, B. Elavarasan, Fahad Alsharari, T. Gharibah, Hina Gulzar, Hashem Bordbar, Le Hoang Son, Emmanuel Ilojide, Tèmítópé Gbóláhàn Jaíyéolá, M. Karthika, Ilanthenral Kandasamy, W.B. Vasantha Kandasamy, Huma Khan, Madad Khan, Mohsin Khan, Hee Sik Kim, Seon Jeong Kim, Valeri Kromov, R. M. Latif, Madeleine Al-Tahan, Mehmat Ali Ozturk, Minghao Hu, S. Mirvakili, Mohammad Abobala, Mohammad Hamidi, Mohammed Abdel-Sattar, Mohammed A. Al Shumrani, Mohamed Talea, Muhammad Akram, Muhammad Aslam, Muhammad Aslam Malik, Muhammad Gulistan, Muhammad Shabir, G. Muhiuddin, Memudu Olaposi Olatinwo, Osman Anis, Choonkil Park, M. Parimala, Ping Li, K. Porselvi, D. Preethi, S. Rajareega, N. Rajesh, Udhayakumar Ramalingam, Riad K. Al-Hamido, Yaser Saber, Arsham Borumand Saeid, Saeid Jafari, Said Broumi, A.A. Salama, Ganeshsree Selvachandran, Songtao Shao, Seok-Zun Song, Tahsin Oner, M. Mohseni Takallo, Binod Chandra Tripathy, Tugce Katican, J. Vimala, Xiaohong Zhang, Xiaoyan Mao, Xiaoying Wu, Xingliang Liang, Xin Zhou, Yingcang Ma, Young Bae Jun, Juanjuan Zhang.