A Study of the Isolation System for Geologic Disposal of Radioactive Wastes

A Study of the Isolation System for Geologic Disposal of Radioactive Wastes PDF Author:
Publisher: National Academies
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 364

Get Book Here

Book Description

A Study of the Isolation System for Geologic Disposal of Radioactive Wastes

A Study of the Isolation System for Geologic Disposal of Radioactive Wastes PDF Author:
Publisher: National Academies
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 364

Get Book Here

Book Description


Improving Operations and Long-Term Safety of the Waste Isolation Pilot Plant

Improving Operations and Long-Term Safety of the Waste Isolation Pilot Plant PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309183138
Category : Science
Languages : en
Pages : 156

Get Book Here

Book Description
The Waste Isolation Pilot Plant (WIPP) is a deep underground mined facility for the disposal of transuranic waste resulting from the nation's defense program. Transuranic waste is defined as waste contaminated with transuranic radionuclides with half-life greater than 20 years and activity greater than 100 nanocuries per gram. The waste mainly consists of contaminated protective clothing, rags, old tools and equipment, pieces of dismantled buildings, chemical residues, and scrap materials. The total activity of the waste expected to be disposed at the WIPP is estimated to be approximately 7 million curies, including 12,900 kilograms of plutonium distributed throughout the waste in very dilute form. The WIPP is located near the community of Carlsbad, in southeastern New Mexico. The geological setting is a 600-meter thick, 250 million-year-old saltbed, the Salado Formation, lying 660 meters below the surface. The National Research Council (NRC) has been providing the U.S. Department of Energy (DOE) scientific and technical evaluations of the WIPP since 1978. The committee's task is twofold: (1) to identify technical issues that can be addressed to enhance confidence in the safe and long-term performance of the repository and (2) to identify opportunities for improving the National Transuranic (TRU) Program for waste management, especially with regard to the safety of workers and the public. This is the first full NRC report issued following the certification of the facility by the U.S. Environmental Protection Agency (EPA) on May 18, 1998. An interim report was issued by the committee in April 2000 and is reproduced in this report. The main findings and recommendations from the interim report have been incorporated into the body of this report. The overarching finding and recommendation of this report is that the activity that would best enhance confidence in the safe and long-term performance of the repository is to monitor critical performance parameters during the long pre-closure phase of repository operations (35 to possibly 100 years). Indeed, in the first 50 to 100 years the rates of important processes such as salt creep, brine inflow (if any), and microbial activity are predicted to be the highest and will be less significant later. The committee recommends that the results of the on-site monitoring program be used to improve the performance assessment for recertification purposes. These results will determine whether the need for a new performance assessment is warranted. For the National TRU Program, the committee finds that the DOE is implementing many of the recommendations of its interim report. It is important that the DOE continue its efforts to improve the packaging, characterization, and transportation of the transuranic waste.

Scientific and Technical Basis for the Geological Disposal of Radioactive Wastes

Scientific and Technical Basis for the Geological Disposal of Radioactive Wastes PDF Author:
Publisher: Technical Reports Series
ISBN:
Category : Business & Economics
Languages : en
Pages : 98

Get Book Here

Book Description
This report focuses on the different functions of a repository within its life cycle and describes the processes relevant to the containment of long lived radioactive waste and other criteria influencing the long term integrity of the repository. It emphasizes the central role of safety and the importance of safety/performance assessments in the decision making process during repository development.

U.S. Geological Survey Research in Radioactive Waste Disposal

U.S. Geological Survey Research in Radioactive Waste Disposal PDF Author: George A. Dinwiddie
Publisher:
ISBN:
Category : Radioactive waste disposal in the ground
Languages : en
Pages : 120

Get Book Here

Book Description


Disposition of High-Level Waste and Spent Nuclear Fuel

Disposition of High-Level Waste and Spent Nuclear Fuel PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309073170
Category : Science
Languages : en
Pages : 215

Get Book Here

Book Description
Focused attention by world leaders is needed to address the substantial challenges posed by disposal of spent nuclear fuel from reactors and high-level radioactive waste from processing such fuel. The biggest challenges in achieving safe and secure storage and permanent waste disposal are societal, although technical challenges remain. Disposition of radioactive wastes in a deep geological repository is a sound approach as long as it progresses through a stepwise decision-making process that takes advantage of technical advances, public participation, and international cooperation. Written for concerned citizens as well as policymakers, this book was sponsored by the U.S. Department of Energy, U.S. Nuclear Regulatory Commission, and waste management organizations in eight other countries.

Radioactive Waste Disposal and Geology

Radioactive Waste Disposal and Geology PDF Author: Konrad Krauskopf
Publisher: Springer Science & Business Media
ISBN: 9400912013
Category : Science
Languages : en
Pages : 157

Get Book Here

Book Description
The perception of radioactive waste as a major problem for the industrial world has developed only recently. Four decades ago the disposal of such waste was regarded as a relatively minor matter. Those were the heady days when nuclear fission seemed the answer to the world's energy needs: the two wartime bombs had demonstrated its awesome power, and now it was to be harnessed for the production of electricity, the excavation of canals, even the running of cars and airplanes. In all applications of fission some waste containing radioactive elements would be generated of course, but it seemed only a trivial annoyance, a problem whose solution could be deferred until the more exciting challenges of constructing reactors and devising more efficient weapons had been mastered. So waste accumulated, some in tanks and some buried in shallow trenches. These were recognized as only temporary, makeshift measures, because it was known that the debris would be hazardous to its surroundings for many thousands of years and hence that more permanent disposal would someday be needed. The difficulty of accomplishing this more lasting disposal only gradually became apparent. The difficulty has been compounded by uncertainty about the physiological effects oflow-Ievel radiation, by the inadequacy of detailed knowledge about the behavior of engineered and geologic materials over long periods under unusual conditions, and by the sensitization of popular fears about radiation in all its forms following widely publicized reactor accidents and leaks from waste storage sites.

Geological Disposal of Radioactive Wastes and Natural Analogues

Geological Disposal of Radioactive Wastes and Natural Analogues PDF Author: W. Miller
Publisher: Elsevier
ISBN: 0080553052
Category : Technology & Engineering
Languages : en
Pages : 329

Get Book Here

Book Description
Many countries are currently exploring the option to dispose of highly radioactive solid wastes deep underground in purpose built, engineered repositories. A number of surface and shallow repositories for less radioactive wastes are already in operation. One of the challenges facing the nuclear industry is to demonstrate confidently that a repository will contain wastes for so long that any releases that might take place in the future will pose no significant health or environmental risk. One method for building confidence in the long-term future safety of a repository is to look at the physical and chemical processes which operate in natural and archaeological systems, and to draw appropriate parallels with the repository. For example, to understand why some uranium orebodies have remained isolated underground for billions of years. Such studies are called 'natural analogues'. This book investigates the concept of geological disposal and examines the wide range of natural analogues which have been studied. Lessons learnt from studies of archaeological and natural systems can be used to improve our capabilities for assessing the future safety of a radioactive waste repository.

Geological Survey Circular

Geological Survey Circular PDF Author:
Publisher:
ISBN:
Category : Geology
Languages : en
Pages : 736

Get Book Here

Book Description


Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste

Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste PDF Author: Michael J Apted
Publisher: Woodhead Publishing
ISBN: 0081006527
Category : Technology & Engineering
Languages : en
Pages : 804

Get Book Here

Book Description
Geological Repository Systems for Safe Disposal of Spent Nuclear Fuels and Radioactive Waste, Second Edition, critically reviews state-of-the-art technologies and scientific methods relating to the implementation of the most effective approaches to the long-term, safe disposition of nuclear waste, also discussing regulatory developments and social engagement approaches as major themes. Chapters in Part One introduce the topic of geological disposal, providing an overview of near-surface, intermediate depth, and deep borehole disposal, spanning low-, medium- and high-level wastes. Part Two addresses the different types of repository systems – crystalline, clay, and salt, also discussing methods of site surveying and construction. The critical safety issue of engineered barrier systems is the focus of Part Three, with coverage ranging from nuclear waste canisters, to buffer and backfill materials. Lastly, Parts Four and Five focus on safety, security, and acceptability, concentrating on repository performance assessment, then radiation protection, environmental monitoring, and social engagement. Comprehensively revised, updated, and expanded with 25% new material on topics of current importance, this is the standard reference for all nuclear waste management and geological repository professionals and researchers. - Contains 25% more material on topics of current importance in this new, comprehensive edition - Fully updated coverage of both near-surface/intermediate depth, and deep borehole disposal in one convenient volume - Goes beyond the scientific and technical aspects of disposal to include the political, regulatory, and societal issues involved, all from an international perspective

U.S. Geological Survey Circular

U.S. Geological Survey Circular PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 542

Get Book Here

Book Description