Author: Steven H. Strogatz
Publisher: CRC Press
ISBN: 0429961111
Category : Mathematics
Languages : en
Pages : 532
Book Description
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Nonlinear Dynamics and Chaos
Author: Steven H. Strogatz
Publisher: CRC Press
ISBN: 0429961111
Category : Mathematics
Languages : en
Pages : 532
Book Description
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Publisher: CRC Press
ISBN: 0429961111
Category : Mathematics
Languages : en
Pages : 532
Book Description
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.
Chaos
Author: Angelo Vulpiani
Publisher: World Scientific
ISBN: 9814277665
Category : Mathematics
Languages : en
Pages : 482
Book Description
Chaos: from simple models to complex systems aims to guide science and engineering students through chaos and nonlinear dynamics from classical examples to the most recent fields of research. The first part, intended for undergraduate and graduate students, is a gentle and self-contained introduction to the concepts and main tools for the characterization of deterministic chaotic systems, with emphasis to statistical approaches. The second part can be used as a reference by researchers as it focuses on more advanced topics including the characterization of chaos with tools of information theory and applications encompassing fluid and celestial mechanics, chemistry and biology. The book is novel in devoting attention to a few topics often overlooked in introductory textbooks and which are usually found only in advanced surveys such as: information and algorithmic complexity theory applied to chaos and generalization of Lyapunov exponents to account for spatiotemporal and non-infinitesimal perturbations. The selection of topics, numerous illustrations, exercises and proposals for computer experiments make the book ideal for both introductory and advanced courses. Sample Chapter(s). Introduction (164 KB). Chapter 1: First Encounter with Chaos (1,323 KB). Contents: First Encounter with Chaos; The Language of Dynamical Systems; Examples of Chaotic Behaviors; Probabilistic Approach to Chaos; Characterization of Chaotic Dynamical Systems; From Order to Chaos in Dissipative Systems; Chaos in Hamiltonian Systems; Chaos and Information Theory; Coarse-Grained Information and Large Scale Predictability; Chaos in Numerical and Laboratory Experiments; Chaos in Low Dimensional Systems; Spatiotemporal Chaos; Turbulence as a Dynamical System Problem; Chaos and Statistical Mechanics: Fermi-Pasta-Ulam a Case Study. Readership: Students and researchers in science (physics, chemistry, mathematics, biology) and engineering.
Publisher: World Scientific
ISBN: 9814277665
Category : Mathematics
Languages : en
Pages : 482
Book Description
Chaos: from simple models to complex systems aims to guide science and engineering students through chaos and nonlinear dynamics from classical examples to the most recent fields of research. The first part, intended for undergraduate and graduate students, is a gentle and self-contained introduction to the concepts and main tools for the characterization of deterministic chaotic systems, with emphasis to statistical approaches. The second part can be used as a reference by researchers as it focuses on more advanced topics including the characterization of chaos with tools of information theory and applications encompassing fluid and celestial mechanics, chemistry and biology. The book is novel in devoting attention to a few topics often overlooked in introductory textbooks and which are usually found only in advanced surveys such as: information and algorithmic complexity theory applied to chaos and generalization of Lyapunov exponents to account for spatiotemporal and non-infinitesimal perturbations. The selection of topics, numerous illustrations, exercises and proposals for computer experiments make the book ideal for both introductory and advanced courses. Sample Chapter(s). Introduction (164 KB). Chapter 1: First Encounter with Chaos (1,323 KB). Contents: First Encounter with Chaos; The Language of Dynamical Systems; Examples of Chaotic Behaviors; Probabilistic Approach to Chaos; Characterization of Chaotic Dynamical Systems; From Order to Chaos in Dissipative Systems; Chaos in Hamiltonian Systems; Chaos and Information Theory; Coarse-Grained Information and Large Scale Predictability; Chaos in Numerical and Laboratory Experiments; Chaos in Low Dimensional Systems; Spatiotemporal Chaos; Turbulence as a Dynamical System Problem; Chaos and Statistical Mechanics: Fermi-Pasta-Ulam a Case Study. Readership: Students and researchers in science (physics, chemistry, mathematics, biology) and engineering.
Applied Symbolic Dynamics And Chaos
Author: Bailin Hao
Publisher: World Scientific
ISBN: 9814495972
Category : Science
Languages : en
Pages : 460
Book Description
Latest Edition: Applied Symbolic Dynamics and Chaos (2nd Edition)Symbolic dynamics is a coarse-grained description of dynamics. It provides a rigorous way to understand the global systematics of periodic and chaotic motion in a system. In the last decade it has been applied to nonlinear systems described by one- and two-dimensional maps as well as by ordinary differential equations. This book will help practitioners in nonlinear science and engineering to master that powerful tool.
Publisher: World Scientific
ISBN: 9814495972
Category : Science
Languages : en
Pages : 460
Book Description
Latest Edition: Applied Symbolic Dynamics and Chaos (2nd Edition)Symbolic dynamics is a coarse-grained description of dynamics. It provides a rigorous way to understand the global systematics of periodic and chaotic motion in a system. In the last decade it has been applied to nonlinear systems described by one- and two-dimensional maps as well as by ordinary differential equations. This book will help practitioners in nonlinear science and engineering to master that powerful tool.
Chaotic Motions in Nonlinear Dynamical Systems
Author: Wanda Szemplinska-Stupnicka
Publisher: Springer
ISBN: 3709125960
Category : Technology & Engineering
Languages : en
Pages : 198
Book Description
Discoveries of chaotic, unpredictable behaviour in physical deterministic systems has brought about new analytic and experimental techniques in dynamics. The modern study of the new phenomena requires the analyst to become familiar with experiments (at least with numerical ones), since chaotic solutions cannot be written down, and it requires the experimenter to master the new concepts of the theory of nonlinear dynamical systems. This book is unique in that it presents both viewpoints: the viewpoint of the analyst and of the experimenter. In the first part F. Moon outlines the new experimental techniques which have emerged from the study of chaotic vibrations. These include Poincaré sections, fractial dimensions and Lapunov exponents. In the text by W. Szemplinska-Stupnicka the relation between the new chaotic phenomena and classical perturbation techniques is explored for the first time. In the third part G. Iooss presents methods of analysis for the calculations of bifurcations in nonlinear systems based on modern geometric mathematical concepts.
Publisher: Springer
ISBN: 3709125960
Category : Technology & Engineering
Languages : en
Pages : 198
Book Description
Discoveries of chaotic, unpredictable behaviour in physical deterministic systems has brought about new analytic and experimental techniques in dynamics. The modern study of the new phenomena requires the analyst to become familiar with experiments (at least with numerical ones), since chaotic solutions cannot be written down, and it requires the experimenter to master the new concepts of the theory of nonlinear dynamical systems. This book is unique in that it presents both viewpoints: the viewpoint of the analyst and of the experimenter. In the first part F. Moon outlines the new experimental techniques which have emerged from the study of chaotic vibrations. These include Poincaré sections, fractial dimensions and Lapunov exponents. In the text by W. Szemplinska-Stupnicka the relation between the new chaotic phenomena and classical perturbation techniques is explored for the first time. In the third part G. Iooss presents methods of analysis for the calculations of bifurcations in nonlinear systems based on modern geometric mathematical concepts.
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 500
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 500
Book Description
Handbook of Dynamical Systems
Author: B. Fiedler
Publisher: Gulf Professional Publishing
ISBN: 0080532845
Category : Science
Languages : en
Pages : 1099
Book Description
This handbook is volume II in a series collecting mathematical state-of-the-art surveys in the field of dynamical systems. Much of this field has developed from interactions with other areas of science, and this volume shows how concepts of dynamical systems further the understanding of mathematical issues that arise in applications. Although modeling issues are addressed, the central theme is the mathematically rigorous investigation of the resulting differential equations and their dynamic behavior. However, the authors and editors have made an effort to ensure readability on a non-technical level for mathematicians from other fields and for other scientists and engineers. The eighteen surveys collected here do not aspire to encyclopedic completeness, but present selected paradigms. The surveys are grouped into those emphasizing finite-dimensional methods, numerics, topological methods, and partial differential equations. Application areas include the dynamics of neural networks, fluid flows, nonlinear optics, and many others.While the survey articles can be read independently, they deeply share recurrent themes from dynamical systems. Attractors, bifurcations, center manifolds, dimension reduction, ergodicity, homoclinicity, hyperbolicity, invariant and inertial manifolds, normal forms, recurrence, shift dynamics, stability, to namejust a few, are ubiquitous dynamical concepts throughout the articles.
Publisher: Gulf Professional Publishing
ISBN: 0080532845
Category : Science
Languages : en
Pages : 1099
Book Description
This handbook is volume II in a series collecting mathematical state-of-the-art surveys in the field of dynamical systems. Much of this field has developed from interactions with other areas of science, and this volume shows how concepts of dynamical systems further the understanding of mathematical issues that arise in applications. Although modeling issues are addressed, the central theme is the mathematically rigorous investigation of the resulting differential equations and their dynamic behavior. However, the authors and editors have made an effort to ensure readability on a non-technical level for mathematicians from other fields and for other scientists and engineers. The eighteen surveys collected here do not aspire to encyclopedic completeness, but present selected paradigms. The surveys are grouped into those emphasizing finite-dimensional methods, numerics, topological methods, and partial differential equations. Application areas include the dynamics of neural networks, fluid flows, nonlinear optics, and many others.While the survey articles can be read independently, they deeply share recurrent themes from dynamical systems. Attractors, bifurcations, center manifolds, dimension reduction, ergodicity, homoclinicity, hyperbolicity, invariant and inertial manifolds, normal forms, recurrence, shift dynamics, stability, to namejust a few, are ubiquitous dynamical concepts throughout the articles.
Los Alamos Science
Author:
Publisher:
ISBN:
Category : Laboratories
Languages : en
Pages : 80
Book Description
Publisher:
ISBN:
Category : Laboratories
Languages : en
Pages : 80
Book Description
Capture Dynamics and Chaotic Motions in Celestial Mechanics
Author: Edward Belbruno
Publisher: Princeton University Press
ISBN: 069118643X
Category : Mathematics
Languages : en
Pages : 232
Book Description
This book describes a revolutionary new approach to determining low energy routes for spacecraft and comets by exploiting regions in space where motion is very sensitive (or chaotic). It also represents an ideal introductory text to celestial mechanics, dynamical systems, and dynamical astronomy. Bringing together wide-ranging research by others with his own original work, much of it new or previously unpublished, Edward Belbruno argues that regions supporting chaotic motions, termed weak stability boundaries, can be estimated. Although controversial until quite recently, this method was in fact first applied in 1991, when Belbruno used a new route developed from this theory to get a stray Japanese satellite back on course to the moon. This application provided a major verification of his theory, representing the first application of chaos to space travel. Since that time, the theory has been used in other space missions, and NASA is implementing new applications under Belbruno's direction. The use of invariant manifolds to find low energy orbits is another method here addressed. Recent work on estimating weak stability boundaries and related regions has also given mathematical insight into chaotic motion in the three-body problem. Belbruno further considers different capture and escape mechanisms, and resonance transitions. Providing a rigorous theoretical framework that incorporates both recent developments such as Aubrey-Mather theory and established fundamentals like Kolmogorov-Arnold-Moser theory, this book represents an indispensable resource for graduate students and researchers in the disciplines concerned as well as practitioners in fields such as aerospace engineering.
Publisher: Princeton University Press
ISBN: 069118643X
Category : Mathematics
Languages : en
Pages : 232
Book Description
This book describes a revolutionary new approach to determining low energy routes for spacecraft and comets by exploiting regions in space where motion is very sensitive (or chaotic). It also represents an ideal introductory text to celestial mechanics, dynamical systems, and dynamical astronomy. Bringing together wide-ranging research by others with his own original work, much of it new or previously unpublished, Edward Belbruno argues that regions supporting chaotic motions, termed weak stability boundaries, can be estimated. Although controversial until quite recently, this method was in fact first applied in 1991, when Belbruno used a new route developed from this theory to get a stray Japanese satellite back on course to the moon. This application provided a major verification of his theory, representing the first application of chaos to space travel. Since that time, the theory has been used in other space missions, and NASA is implementing new applications under Belbruno's direction. The use of invariant manifolds to find low energy orbits is another method here addressed. Recent work on estimating weak stability boundaries and related regions has also given mathematical insight into chaotic motion in the three-body problem. Belbruno further considers different capture and escape mechanisms, and resonance transitions. Providing a rigorous theoretical framework that incorporates both recent developments such as Aubrey-Mather theory and established fundamentals like Kolmogorov-Arnold-Moser theory, this book represents an indispensable resource for graduate students and researchers in the disciplines concerned as well as practitioners in fields such as aerospace engineering.
Chaotic Numerics
Author: Peter E. Kloeden
Publisher: American Mathematical Soc.
ISBN: 0821851845
Category : Mathematics
Languages : en
Pages : 290
Book Description
Much of what is known about specific dynamical systems is obtained from numerical experiments. Although the discretization process usually has no significant effect on the results for simple, well-behaved dynamics, acute sensitivity to changes in initial conditions is a hallmark of chaotic behavior. How confident can one be that the numerical dynamics reflects that of the original system? Do numerically calculated trajectories always shadow a true one? What role does numerical analysis play in the study of dynamical systems? And conversely, can advances in dynamical systems provide new insights into numerical algorithms? These and related issues were the focus of the workshop on Chaotic Numerics, held at Deakin University in Geelong, Australia, in July 1993. The contributions to this book are based on lectures presented during the workshop and provide a broad overview of this area of research.
Publisher: American Mathematical Soc.
ISBN: 0821851845
Category : Mathematics
Languages : en
Pages : 290
Book Description
Much of what is known about specific dynamical systems is obtained from numerical experiments. Although the discretization process usually has no significant effect on the results for simple, well-behaved dynamics, acute sensitivity to changes in initial conditions is a hallmark of chaotic behavior. How confident can one be that the numerical dynamics reflects that of the original system? Do numerically calculated trajectories always shadow a true one? What role does numerical analysis play in the study of dynamical systems? And conversely, can advances in dynamical systems provide new insights into numerical algorithms? These and related issues were the focus of the workshop on Chaotic Numerics, held at Deakin University in Geelong, Australia, in July 1993. The contributions to this book are based on lectures presented during the workshop and provide a broad overview of this area of research.
Artificial Neural Networks and Machine Learning - ICANN 2011
Author: Timo Honkela
Publisher: Springer
ISBN: 3642217389
Category : Computers
Languages : en
Pages : 492
Book Description
This two volume set (LNCS 6791 and LNCS 6792) constitutes the refereed proceedings of the 21th International Conference on Artificial Neural Networks, ICANN 2011, held in Espoo, Finland, in June 2011. The 106 revised full or poster papers presented were carefully reviewed and selected from numerous submissions. ICANN 2011 had two basic tracks: brain-inspired computing and machine learning research, with strong cross-disciplinary interactions and applications.
Publisher: Springer
ISBN: 3642217389
Category : Computers
Languages : en
Pages : 492
Book Description
This two volume set (LNCS 6791 and LNCS 6792) constitutes the refereed proceedings of the 21th International Conference on Artificial Neural Networks, ICANN 2011, held in Espoo, Finland, in June 2011. The 106 revised full or poster papers presented were carefully reviewed and selected from numerous submissions. ICANN 2011 had two basic tracks: brain-inspired computing and machine learning research, with strong cross-disciplinary interactions and applications.