Author: N. Dubin
Publisher: Springer Science & Business Media
ISBN: 364246338X
Category : Mathematics
Languages : en
Pages : 177
Book Description
Stochastic processes often pose the difficulty that, as soon as a model devi ates from the simplest kinds of assumptions, the differential equations obtained for the density and the generating functions become mathematically formidable. Worse still, one is very often led to equations which have no known solution and don't yield to standard analytical methods for differential equations. In the model considered here, one for tumor growth with an immunological re sponse from the normal tissue, a nonlinear term in the transition probability for the death of a tumor cell leads to the above-mentioned complications. Despite the mathematical disadvantages of this nonlinearity, we are able to consider a more sophisticated model biologically. Ultimately, in order to achieve a more realistic representation of a complicated phenomenon, it is necessary to examine mechanisms which allow the model to deviate from the more mathematically tractable linear format. Thus far, stochastic models for tumor growth have almost exclusively considered linear transition probabilities.
A Stochastic Model for Immunological Feedback in Carcinogenesis: Analysis and Approximations
Author: N. Dubin
Publisher: Springer Science & Business Media
ISBN: 364246338X
Category : Mathematics
Languages : en
Pages : 177
Book Description
Stochastic processes often pose the difficulty that, as soon as a model devi ates from the simplest kinds of assumptions, the differential equations obtained for the density and the generating functions become mathematically formidable. Worse still, one is very often led to equations which have no known solution and don't yield to standard analytical methods for differential equations. In the model considered here, one for tumor growth with an immunological re sponse from the normal tissue, a nonlinear term in the transition probability for the death of a tumor cell leads to the above-mentioned complications. Despite the mathematical disadvantages of this nonlinearity, we are able to consider a more sophisticated model biologically. Ultimately, in order to achieve a more realistic representation of a complicated phenomenon, it is necessary to examine mechanisms which allow the model to deviate from the more mathematically tractable linear format. Thus far, stochastic models for tumor growth have almost exclusively considered linear transition probabilities.
Publisher: Springer Science & Business Media
ISBN: 364246338X
Category : Mathematics
Languages : en
Pages : 177
Book Description
Stochastic processes often pose the difficulty that, as soon as a model devi ates from the simplest kinds of assumptions, the differential equations obtained for the density and the generating functions become mathematically formidable. Worse still, one is very often led to equations which have no known solution and don't yield to standard analytical methods for differential equations. In the model considered here, one for tumor growth with an immunological re sponse from the normal tissue, a nonlinear term in the transition probability for the death of a tumor cell leads to the above-mentioned complications. Despite the mathematical disadvantages of this nonlinearity, we are able to consider a more sophisticated model biologically. Ultimately, in order to achieve a more realistic representation of a complicated phenomenon, it is necessary to examine mechanisms which allow the model to deviate from the more mathematically tractable linear format. Thus far, stochastic models for tumor growth have almost exclusively considered linear transition probabilities.
Mathematical Models in Cell Biology and Cancer Chemotherapy
Author: M. Eisen
Publisher: Springer Science & Business Media
ISBN: 364293126X
Category : Mathematics
Languages : en
Pages : 444
Book Description
The purpose of this book is to show how mathematics can be applied to improve cancer chemotherapy. Unfortunately, most drugs used in treating cancer kill both normal and abnormal cells. However, more cancer cells than normal cells can be destroyed by the drug because tumor cells usually exhibit different growth kinetics than normal cells. To capitalize on this last fact, cell kinetics must be studied by formulating mathematical models of normal and abnormal cell growth. These models allow the therapeutic and harmful effects of cancer drugs to be simulated quantitatively. The combined cell and drug models can be used to study the effects of different methods of administering drugs. The least harmful method of drug administration, according to a given criterion, can be found by applying optimal control theory. The prerequisites for reading this book are an elementary knowledge of ordinary differential equations, probability, statistics, and linear algebra. In order to make this book self-contained, a chapter on cell biology and a chapter on control theory have been included. Those readers who have had some exposure to biology may prefer to omit Chapter I (Cell Biology) and only use it as a reference when required. However, few biologists have been exposed to control theory. Chapter 7 provides a short, coherent and comprehensible presentation of this subject. The concepts of control theory are necessary for a full understanding of Chapters 8 and 9.
Publisher: Springer Science & Business Media
ISBN: 364293126X
Category : Mathematics
Languages : en
Pages : 444
Book Description
The purpose of this book is to show how mathematics can be applied to improve cancer chemotherapy. Unfortunately, most drugs used in treating cancer kill both normal and abnormal cells. However, more cancer cells than normal cells can be destroyed by the drug because tumor cells usually exhibit different growth kinetics than normal cells. To capitalize on this last fact, cell kinetics must be studied by formulating mathematical models of normal and abnormal cell growth. These models allow the therapeutic and harmful effects of cancer drugs to be simulated quantitatively. The combined cell and drug models can be used to study the effects of different methods of administering drugs. The least harmful method of drug administration, according to a given criterion, can be found by applying optimal control theory. The prerequisites for reading this book are an elementary knowledge of ordinary differential equations, probability, statistics, and linear algebra. In order to make this book self-contained, a chapter on cell biology and a chapter on control theory have been included. Those readers who have had some exposure to biology may prefer to omit Chapter I (Cell Biology) and only use it as a reference when required. However, few biologists have been exposed to control theory. Chapter 7 provides a short, coherent and comprehensible presentation of this subject. The concepts of control theory are necessary for a full understanding of Chapters 8 and 9.
Current Catalog
Author: National Library of Medicine (U.S.)
Publisher:
ISBN:
Category : Medicine
Languages : en
Pages : 1378
Book Description
First multi-year cumulation covers six years: 1965-70.
Publisher:
ISBN:
Category : Medicine
Languages : en
Pages : 1378
Book Description
First multi-year cumulation covers six years: 1965-70.
A Stochastic Model for Immunological Feedback in Carcinogenesis
Author: Neil Dubin
Publisher: Springer Verlag
ISBN: 9780387077864
Category : Medical
Languages : en
Pages : 0
Book Description
Publisher: Springer Verlag
ISBN: 9780387077864
Category : Medical
Languages : en
Pages : 0
Book Description
Synergetics
Author: Hermann Haken
Publisher: Springer Science & Business Media
ISBN: 9783540408246
Category : Language Arts & Disciplines
Languages : en
Pages : 796
Book Description
This book is an often-requested reprint of two classic texts by H. Haken: "Synergetics. An Introduction" and "Advanced Synergetics". Synergetics, an interdisciplinary research program initiated by H. Haken in 1969, deals with the systematic and methodological approach to the rapidly growing field of complexity. Going well beyond qualitative analogies between complex systems in fields as diverse as physics, chemistry, biology, sociology and economics, Synergetics uses tools from theoretical physics and mathematics to construct an unifying framework within which quantitative descriptions of complex, self-organizing systems can be made. This may well explain the timelessness of H. Haken's original texts on this topic, which are now recognized as landmarks in the field of complex systems. They provide both the beginning graduate student and the seasoned researcher with solid knowledge of the basic concepts and mathematical tools. Moreover, they admirably convey the spirit of the pioneering work by the founder of Synergetics through the essential applications contained herein that have lost nothing of their paradigmatic character since they were conceived.
Publisher: Springer Science & Business Media
ISBN: 9783540408246
Category : Language Arts & Disciplines
Languages : en
Pages : 796
Book Description
This book is an often-requested reprint of two classic texts by H. Haken: "Synergetics. An Introduction" and "Advanced Synergetics". Synergetics, an interdisciplinary research program initiated by H. Haken in 1969, deals with the systematic and methodological approach to the rapidly growing field of complexity. Going well beyond qualitative analogies between complex systems in fields as diverse as physics, chemistry, biology, sociology and economics, Synergetics uses tools from theoretical physics and mathematics to construct an unifying framework within which quantitative descriptions of complex, self-organizing systems can be made. This may well explain the timelessness of H. Haken's original texts on this topic, which are now recognized as landmarks in the field of complex systems. They provide both the beginning graduate student and the seasoned researcher with solid knowledge of the basic concepts and mathematical tools. Moreover, they admirably convey the spirit of the pioneering work by the founder of Synergetics through the essential applications contained herein that have lost nothing of their paradigmatic character since they were conceived.
Models of the Stochastic Activity of Neurones
Author: A. V. Holden
Publisher: Springer Science & Business Media
ISBN: 3642463452
Category : Mathematics
Languages : en
Pages : 378
Book Description
These notes have grown from a series of seminars given at Leeds between 1972 and 1975. They represent an attempt to gather together the different kinds of model which have been proposed to account for the stochastic activity of neurones, and to provide an introduction to this area of mathematical biology. A striking feature of the electrical activity of the nervous system is that it appears stochastic: this is apparent at all levels of recording, ranging from intracellular recordings to the electroencephalogram. The chapters start with fluctuations in membrane potential, proceed through single unit and synaptic activity and end with the behaviour of large aggregates of neurones: L have chgaen this seque~~e\/~~';uggest that the interesting behaviourr~f :the nervous system - its individuality, variability and dynamic forms - may in part result from the stochastic behaviour of its components. I would like to thank Dr. Julio Rubio for reading and commenting on the drafts, Mrs. Doris Beighton for producing the final typescript and Mr. Peter Hargreaves for preparing the figures.
Publisher: Springer Science & Business Media
ISBN: 3642463452
Category : Mathematics
Languages : en
Pages : 378
Book Description
These notes have grown from a series of seminars given at Leeds between 1972 and 1975. They represent an attempt to gather together the different kinds of model which have been proposed to account for the stochastic activity of neurones, and to provide an introduction to this area of mathematical biology. A striking feature of the electrical activity of the nervous system is that it appears stochastic: this is apparent at all levels of recording, ranging from intracellular recordings to the electroencephalogram. The chapters start with fluctuations in membrane potential, proceed through single unit and synaptic activity and end with the behaviour of large aggregates of neurones: L have chgaen this seque~~e\/~~';uggest that the interesting behaviourr~f :the nervous system - its individuality, variability and dynamic forms - may in part result from the stochastic behaviour of its components. I would like to thank Dr. Julio Rubio for reading and commenting on the drafts, Mrs. Doris Beighton for producing the final typescript and Mr. Peter Hargreaves for preparing the figures.
Systems Theory in Immunology
Author: C. Bruni
Publisher: Springer Science & Business Media
ISBN: 3642931308
Category : Mathematics
Languages : en
Pages : 286
Book Description
This volume collects the contributions presented at the "Working Conference on System Theory in Immunology", held in Rome, May 1978. The aim of the Conference was to bring together immunologists on one side and experts in system theory and applied mathematics on the other, in order to identify problems of common interest and to establish a network of joint effort toward their solution. The methodologies of system theory for processing experimental data and for describing dynamical phenomena could indeed contribute significantly to the under standing of basic immunological facts. Conversely, the complexity of experimental results and of interpretative models should stimulate mathematicians to formulate new problems and to design appropriate procedures of analysis. The multitude of scientific publications in theoretical biology, appeared in recent years, confirms this trend and calls for extensive interaction between mat- matics and immunology. The material of this volume is divided into five sections, along the scheme of the Conference program.
Publisher: Springer Science & Business Media
ISBN: 3642931308
Category : Mathematics
Languages : en
Pages : 286
Book Description
This volume collects the contributions presented at the "Working Conference on System Theory in Immunology", held in Rome, May 1978. The aim of the Conference was to bring together immunologists on one side and experts in system theory and applied mathematics on the other, in order to identify problems of common interest and to establish a network of joint effort toward their solution. The methodologies of system theory for processing experimental data and for describing dynamical phenomena could indeed contribute significantly to the under standing of basic immunological facts. Conversely, the complexity of experimental results and of interpretative models should stimulate mathematicians to formulate new problems and to design appropriate procedures of analysis. The multitude of scientific publications in theoretical biology, appeared in recent years, confirms this trend and calls for extensive interaction between mat- matics and immunology. The material of this volume is divided into five sections, along the scheme of the Conference program.
Algebras in Genetics
Author: Angelika Wörz-Busekros
Publisher: Springer Science & Business Media
ISBN: 3642510388
Category : Mathematics
Languages : en
Pages : 247
Book Description
The purpose of these notes is to give a rather complete presentation of the mathematical theory of algebras in genetics and to discuss in detail many applications to concrete genetic situations. Historically, the subject has its origin in several papers of Etherington in 1939- 1941. Fundamental contributions have been given by Schafer, Gonshor, Holgate, Reiers¢l, Heuch, and Abraham. At the moment there exist about forty papers in this field, one survey article by Monique Bertrand from 1966 based on four papers of Etherington, a paper by Schafer and Gonshor's first paper. Furthermore Ballonoff in the third section of his book "Genetics and Social Structure" has included four papers by Etherington and Reiers¢l's paper. Apparently a complete review, in par ticular one comprising more recent results was lacking, and it was difficult for students to enter this field of research. I started to write these notes in spring 1978. A first german version was finished at the end of that year. Further revision and translation required another year. I hope that the notes in their present state provide a reasonable review and that they will facilitate access to this field. I am especially grateful to Professor K. -P. Hadeler and Professor P. Holgate for reading the manuscript and giving essential comments to all versions of the text. I am also very grateful to Dr. I. Heuch for many discussions during and after his stay in TUbingen. I wish to thank Dr. V. M.
Publisher: Springer Science & Business Media
ISBN: 3642510388
Category : Mathematics
Languages : en
Pages : 247
Book Description
The purpose of these notes is to give a rather complete presentation of the mathematical theory of algebras in genetics and to discuss in detail many applications to concrete genetic situations. Historically, the subject has its origin in several papers of Etherington in 1939- 1941. Fundamental contributions have been given by Schafer, Gonshor, Holgate, Reiers¢l, Heuch, and Abraham. At the moment there exist about forty papers in this field, one survey article by Monique Bertrand from 1966 based on four papers of Etherington, a paper by Schafer and Gonshor's first paper. Furthermore Ballonoff in the third section of his book "Genetics and Social Structure" has included four papers by Etherington and Reiers¢l's paper. Apparently a complete review, in par ticular one comprising more recent results was lacking, and it was difficult for students to enter this field of research. I started to write these notes in spring 1978. A first german version was finished at the end of that year. Further revision and translation required another year. I hope that the notes in their present state provide a reasonable review and that they will facilitate access to this field. I am especially grateful to Professor K. -P. Hadeler and Professor P. Holgate for reading the manuscript and giving essential comments to all versions of the text. I am also very grateful to Dr. I. Heuch for many discussions during and after his stay in TUbingen. I wish to thank Dr. V. M.
Stochastic Models for Spike Trains of Single Neurons
Author: S.K. Srinivasan
Publisher: Springer Science & Business Media
ISBN: 364248302X
Category : Mathematics
Languages : en
Pages : 197
Book Description
1 Some basic neurophysiology 4 The neuron 1. 1 4 1. 1. 1 The axon 7 1. 1. 2 The synapse 9 12 1. 1. 3 The soma 1. 1. 4 The dendrites 13 13 1. 2 Types of neurons 2 Signals in the nervous system 14 2. 1 Action potentials as point events - point processes in the nervous system 15 18 2. 2 Spontaneous activi~ in neurons 3 Stochastic modelling of single neuron spike trains 19 3. 1 Characteristics of a neuron spike train 19 3. 2 The mathematical neuron 23 4 Superposition models 26 4. 1 superposition of renewal processes 26 4. 2 Superposition of stationary point processe- limiting behaviour 34 4. 2. 1 Palm functions 35 4. 2. 2 Asymptotic behaviour of n stationary point processes superposed 36 4. 3 Superposition models of neuron spike trains 37 4. 3. 1 Model 4. 1 39 4. 3. 2 Model 4. 2 - A superposition model with 40 two input channels 40 4. 3. 3 Model 4. 3 4. 4 Discussion 41 43 5 Deletion models 5. 1 Deletion models with 1nd~endent interaction of excitatory and inhibitory sequences 44 VI 5. 1. 1 Model 5. 1 The basic deletion model 45 5. 1. 2 Higher-order properties of the sequence of r-events 55 5. 1. 3 Extended version of Model 5. 1 - Model 60 5. 2 5. 2 Models with dependent interaction of excitatory and inhibitory sequences - MOdels 5. 3 and 5.
Publisher: Springer Science & Business Media
ISBN: 364248302X
Category : Mathematics
Languages : en
Pages : 197
Book Description
1 Some basic neurophysiology 4 The neuron 1. 1 4 1. 1. 1 The axon 7 1. 1. 2 The synapse 9 12 1. 1. 3 The soma 1. 1. 4 The dendrites 13 13 1. 2 Types of neurons 2 Signals in the nervous system 14 2. 1 Action potentials as point events - point processes in the nervous system 15 18 2. 2 Spontaneous activi~ in neurons 3 Stochastic modelling of single neuron spike trains 19 3. 1 Characteristics of a neuron spike train 19 3. 2 The mathematical neuron 23 4 Superposition models 26 4. 1 superposition of renewal processes 26 4. 2 Superposition of stationary point processe- limiting behaviour 34 4. 2. 1 Palm functions 35 4. 2. 2 Asymptotic behaviour of n stationary point processes superposed 36 4. 3 Superposition models of neuron spike trains 37 4. 3. 1 Model 4. 1 39 4. 3. 2 Model 4. 2 - A superposition model with 40 two input channels 40 4. 3. 3 Model 4. 3 4. 4 Discussion 41 43 5 Deletion models 5. 1 Deletion models with 1nd~endent interaction of excitatory and inhibitory sequences 44 VI 5. 1. 1 Model 5. 1 The basic deletion model 45 5. 1. 2 Higher-order properties of the sequence of r-events 55 5. 1. 3 Extended version of Model 5. 1 - Model 60 5. 2 5. 2 Models with dependent interaction of excitatory and inhibitory sequences - MOdels 5. 3 and 5.
The Mechanics and Biophysics of Hearing
Author: Peter Dallos
Publisher: Springer
ISBN: 1475743416
Category : Mathematics
Languages : en
Pages : 426
Book Description
Proceedings of a workshop on the physics and biophysics of hearing that brought together experimenters and modelers working on all aspects of audition. Topics covered include: cochlear mechanical measurements, cochlear models, mechanicals and biophysics of hair cells, efferent control, and ultrastructure.
Publisher: Springer
ISBN: 1475743416
Category : Mathematics
Languages : en
Pages : 426
Book Description
Proceedings of a workshop on the physics and biophysics of hearing that brought together experimenters and modelers working on all aspects of audition. Topics covered include: cochlear mechanical measurements, cochlear models, mechanicals and biophysics of hair cells, efferent control, and ultrastructure.