Handbook of Nuclear Engineering

Handbook of Nuclear Engineering PDF Author: Dan Gabriel Cacuci
Publisher: Springer Science & Business Media
ISBN: 0387981306
Category : Science
Languages : en
Pages : 3701

Get Book Here

Book Description
This is an authoritative compilation of information regarding methods and data used in all phases of nuclear engineering. Addressing nuclear engineers and scientists at all levels, this book provides a condensed reference on nuclear engineering since 1958.

Handbook of Nuclear Engineering

Handbook of Nuclear Engineering PDF Author: Dan Gabriel Cacuci
Publisher: Springer Science & Business Media
ISBN: 0387981306
Category : Science
Languages : en
Pages : 3701

Get Book Here

Book Description
This is an authoritative compilation of information regarding methods and data used in all phases of nuclear engineering. Addressing nuclear engineers and scientists at all levels, this book provides a condensed reference on nuclear engineering since 1958.

A Solution of the Neutron Transport Equation

A Solution of the Neutron Transport Equation PDF Author: J. Certaine
Publisher:
ISBN:
Category : Angular momentum (Nuclear physics)
Languages : en
Pages : 128

Get Book Here

Book Description


Mathematical Topics In Neutron Transport Theory: New Aspects

Mathematical Topics In Neutron Transport Theory: New Aspects PDF Author: Mustapha Mokhtar Kharroubi
Publisher: World Scientific
ISBN: 981449819X
Category : Science
Languages : en
Pages : 372

Get Book Here

Book Description
This book presents some recent mathematical developments about neutron transport equations. Several different topics are dealt with including regularity of velocity averages, spectral analysis of transport operators, inverse problems, nonlinear problems arising in the stochastic theory of neutron chain fissions, compactness properties of perturbed of c0-semigroups in Banach spaces with applications to transport theory, Miyadera perturbations of c0-semigroups in Banach spaces with applications to singular transport equations, a thorough analysis of the leading eigenelements of transport operators and their approximation, scattering theory. Besides the new problems addressed in this book a unification and extension of the classical spectral analysis of neutron transport equations is given.

Deterministic Numerical Methods for Unstructured-Mesh Neutron Transport Calculation

Deterministic Numerical Methods for Unstructured-Mesh Neutron Transport Calculation PDF Author: Liangzhi Cao
Publisher: Woodhead Publishing
ISBN: 0128182229
Category : Technology & Engineering
Languages : en
Pages : 294

Get Book Here

Book Description
Deterministic Numerical Methods for Unstructured-Mesh Neutron Transport Calculation presents the latest deterministic numerical methods for neutron transport equations (NTEs) with complex geometry, which are of great demand in recent years due to the rapid development of advanced nuclear reactor concepts and high-performance computational technologies. This book covers the wellknown methods proposed and used in recent years, not only theoretical modeling but also numerical results. This book provides readers with a very thorough understanding of unstructured neutron transport calculations and enables them to develop their own computational codes. The fundamentals, numerical discretization methods, algorithms, and numerical results are discussed. Researchers and engineers from utilities and research institutes are provided with examples on how to model an advanced nuclear reactor, which they can then apply to their own research projects and lab settings. - Combines the theoretical models with numerical methods and results in one complete resource - Presents the latest progress on the topic in an easy-to-navigate format

Numerical Methods in the Theory of Neutron Transport

Numerical Methods in the Theory of Neutron Transport PDF Author: Guriĭ Ivanovich Marchuk
Publisher: Harwood Academic Publishers
ISBN:
Category : Science
Languages : en
Pages : 632

Get Book Here

Book Description


Modelling of Nuclear Reactor Multi-physics

Modelling of Nuclear Reactor Multi-physics PDF Author: Christophe Demazière
Publisher: Academic Press
ISBN: 012815070X
Category : Technology & Engineering
Languages : en
Pages : 370

Get Book Here

Book Description
Modelling of Nuclear Reactor Multiphysics: From Local Balance Equations to Macroscopic Models in Neutronics and Thermal-Hydraulics is an accessible guide to the advanced methods used to model nuclear reactor systems. The book addresses the frontier discipline of neutronic/thermal-hydraulic modelling of nuclear reactor cores, presenting the main techniques in a generic manner and for practical reactor calculations.The modelling of nuclear reactor systems is one of the most challenging tasks in complex system modelling, due to the many different scales and intertwined physical phenomena involved. The nuclear industry as well as the research institutes and universities heavily rely on the use of complex numerical codes. All the commercial codes are based on using different numerical tools for resolving the various physical fields, and to some extent the different scales, whereas the latest research platforms attempt to adopt a more integrated approach in resolving multiple scales and fields of physics. The book presents the main algorithms used in such codes for neutronic and thermal-hydraulic modelling, providing the details of the underlying methods, together with their assumptions and limitations. Because of the rapidly expanding use of coupled calculations for performing safety analyses, the analysists should be equally knowledgeable in all fields (i.e. neutron transport, fluid dynamics, heat transfer).The first chapter introduces the book's subject matter and explains how to use its digital resources and interactive features. The following chapter derives the governing equations for neutron transport, fluid transport, and heat transfer, so that readers not familiar with any of these fields can comprehend the book without difficulty. The book thereafter examines the peculiarities of nuclear reactor systems and provides an overview of the relevant modelling strategies. Computational methods for neutron transport, first at the cell and assembly levels, then at the core level, and for one-/two-phase flow transport and heat transfer are treated in depth in respective chapters. The coupling between neutron transport solvers and thermal-hydraulic solvers for coarse mesh macroscopic models is given particular attention in a dedicated chapter. The final chapter summarizes the main techniques presented in the book and their interrelation, then explores beyond state-of-the-art modelling techniques relying on more integrated approaches. - Covers neutron transport, fluid dynamics, and heat transfer, and their interdependence, in one reference - Analyses the emerging area of multi-physics and multi-scale reactor modelling - Contains 71 short videos explaining the key concepts and 77 interactive quizzes allowing the readers to test their understanding

Transport Theory

Transport Theory PDF Author: James J. Duderstadt
Publisher: John Wiley & Sons
ISBN:
Category : Science
Languages : en
Pages : 630

Get Book Here

Book Description
Problems after each chapter

Fractional Calculus with Applications for Nuclear Reactor Dynamics

Fractional Calculus with Applications for Nuclear Reactor Dynamics PDF Author: Santanu Saha Ray
Publisher: CRC Press
ISBN: 149872728X
Category : Mathematics
Languages : en
Pages : 232

Get Book Here

Book Description
Introduces Novel Applications for Solving Neutron Transport EquationsWhile deemed nonessential in the past, fractional calculus is now gaining momentum in the science and engineering community. Various disciplines have discovered that realistic models of physical phenomenon can be achieved with fractional calculus and are using them in numerous way

The Physics of Nuclear Reactors

The Physics of Nuclear Reactors PDF Author: Serge Marguet
Publisher: Springer
ISBN: 3319595601
Category : Science
Languages : en
Pages : 1462

Get Book Here

Book Description
This comprehensive volume offers readers a progressive and highly detailed introduction to the complex behavior of neutrons in general, and in the context of nuclear power generation. A compendium and handbook for nuclear engineers, a source of teaching material for academic lecturers as well as a graduate text for advanced students and other non-experts wishing to enter this field, it is based on the author’s teaching and research experience and his recognized expertise in nuclear safety. After recapping a number of points in nuclear physics, placing the theoretical notions in their historical context, the book successively reveals the latest quantitative theories concerning: • The slowing-down of neutrons in matter • The charged particles and electromagnetic rays • The calculation scheme, especially the simplification hypothesis • The concept of criticality based on chain reactions • The theory of homogeneous and heterogeneous reactors • The problem of self-shielding • The theory of the nuclear reflector, a subject largely ignored in literature • The computational methods in transport and diffusion theories Complemented by more than 400 bibliographical references, some of which are commented and annotated, and augmented by an appendix on the history of reactor physics at EDF (Electricité De France), this book is the most comprehensive and up-to-date introduction to and reference resource in neutronics and reactor theory.

Nuclear Reactor

Nuclear Reactor PDF Author: John C. Lee
Publisher: John Wiley & Sons
ISBN: 1119582326
Category : Technology & Engineering
Languages : en
Pages : 658

Get Book Here

Book Description
An introductory text for broad areas of nuclear reactor physics Nuclear Reactor Physics and Engineering offers information on analysis, design, control, and operation of nuclear reactors. The author—a noted expert on the topic—explores the fundamentals and presents the mathematical formulations that are grounded in differential equations and linear algebra. The book puts the focus on the use of neutron diffusion theory for the development of techniques for lattice physics and global reactor system analysis. The author also includes recent developments in numerical algorithms, including the Krylov subspace method, and the MATLAB software, including the Simulink toolbox, for efficient studies of steady-state and transient reactor configurations. In addition, nuclear fuel cycle and associated economics analysis are presented, together with the application of modern control theory to reactor operation. This important book: Provides a comprehensive introduction to the fundamental concepts of nuclear reactor physics and engineering Contains information on nuclear reactor kinetics and reactor design analysis Presents illustrative examples to enhance understanding Offers self-contained derivation of fluid conservation equations Written for undergraduate and graduate students in nuclear engineering and practicing engineers, Nuclear Reactor Physics and Engineering covers the fundamental concepts and tools of nuclear reactor physics and analysis.