A Short Introduction to Intuitionistic Logic

A Short Introduction to Intuitionistic Logic PDF Author: Grigori Mints
Publisher: Springer Science & Business Media
ISBN: 0306469758
Category : Mathematics
Languages : en
Pages : 130

Get Book Here

Book Description
Intuitionistic logic is presented here as part of familiar classical logic which allows mechanical extraction of programs from proofs. to make the material more accessible, basic techniques are presented first for propositional logic; Part II contains extensions to predicate logic. This material provides an introduction and a safe background for reading research literature in logic and computer science as well as advanced monographs. Readers are assumed to be familiar with basic notions of first order logic. One device for making this book short was inventing new proofs of several theorems. The presentation is based on natural deduction. The topics include programming interpretation of intuitionistic logic by simply typed lambda-calculus (Curry-Howard isomorphism), negative translation of classical into intuitionistic logic, normalization of natural deductions, applications to category theory, Kripke models, algebraic and topological semantics, proof-search methods, interpolation theorem. The text developed from materal for several courses taught at Stanford University in 1992-1999.

A Short Introduction to Intuitionistic Logic

A Short Introduction to Intuitionistic Logic PDF Author: Grigori Mints
Publisher: Springer Science & Business Media
ISBN: 0306469758
Category : Mathematics
Languages : en
Pages : 130

Get Book Here

Book Description
Intuitionistic logic is presented here as part of familiar classical logic which allows mechanical extraction of programs from proofs. to make the material more accessible, basic techniques are presented first for propositional logic; Part II contains extensions to predicate logic. This material provides an introduction and a safe background for reading research literature in logic and computer science as well as advanced monographs. Readers are assumed to be familiar with basic notions of first order logic. One device for making this book short was inventing new proofs of several theorems. The presentation is based on natural deduction. The topics include programming interpretation of intuitionistic logic by simply typed lambda-calculus (Curry-Howard isomorphism), negative translation of classical into intuitionistic logic, normalization of natural deductions, applications to category theory, Kripke models, algebraic and topological semantics, proof-search methods, interpolation theorem. The text developed from materal for several courses taught at Stanford University in 1992-1999.

Philosophical and Mathematical Logic

Philosophical and Mathematical Logic PDF Author: Harrie de Swart
Publisher: Springer
ISBN: 3030032558
Category : Philosophy
Languages : en
Pages : 558

Get Book Here

Book Description
This book was written to serve as an introduction to logic, with in each chapter – if applicable – special emphasis on the interplay between logic and philosophy, mathematics, language and (theoretical) computer science. The reader will not only be provided with an introduction to classical logic, but to philosophical (modal, epistemic, deontic, temporal) and intuitionistic logic as well. The first chapter is an easy to read non-technical Introduction to the topics in the book. The next chapters are consecutively about Propositional Logic, Sets (finite and infinite), Predicate Logic, Arithmetic and Gödel’s Incompleteness Theorems, Modal Logic, Philosophy of Language, Intuitionism and Intuitionistic Logic, Applications (Prolog; Relational Databases and SQL; Social Choice Theory, in particular Majority Judgment) and finally, Fallacies and Unfair Discussion Methods. Throughout the text, the author provides some impressions of the historical development of logic: Stoic and Aristotelian logic, logic in the Middle Ages and Frege's Begriffsschrift, together with the works of George Boole (1815-1864) and August De Morgan (1806-1871), the origin of modern logic. Since "if ..., then ..." can be considered to be the heart of logic, throughout this book much attention is paid to conditionals: material, strict and relevant implication, entailment, counterfactuals and conversational implicature are treated and many references for further reading are given. Each chapter is concluded with answers to the exercises. Philosophical and Mathematical Logic is a very recent book (2018), but with every aspect of a classic. What a wonderful book! Work written with all the necessary rigor, with immense depth, but without giving up clarity and good taste. Philosophy and mathematics go hand in hand with the most diverse themes of logic. An introductory text, but not only that. It goes much further. It's worth diving into the pages of this book, dear reader! Paulo Sérgio Argolo

The Boundary Stones of Thought

The Boundary Stones of Thought PDF Author: Ian Rumfitt
Publisher:
ISBN: 0198733631
Category : Language Arts & Disciplines
Languages : en
Pages : 369

Get Book Here

Book Description
Classical logic has been attacked by adherents of rival, anti-realist logical systems: Ian Rumfitt comes to its defence. He considers the nature of logic, and how to arbitrate between different logics. He argues that classical logic may dispense with the principle of bivalence, and may thus be liberated from the dead hand of classical semantics.

Treatise on Intuitionistic Type Theory

Treatise on Intuitionistic Type Theory PDF Author: Johan Georg Granström
Publisher: Springer Science & Business Media
ISBN: 9400717369
Category : Philosophy
Languages : en
Pages : 198

Get Book Here

Book Description
Intuitionistic type theory can be described, somewhat boldly, as a partial fulfillment of the dream of a universal language for science. This book expounds several aspects of intuitionistic type theory, such as the notion of set, reference vs. computation, assumption, and substitution. Moreover, the book includes philosophically relevant sections on the principle of compositionality, lingua characteristica, epistemology, propositional logic, intuitionism, and the law of excluded middle. Ample historical references are given throughout the book.

Logic and Structure

Logic and Structure PDF Author: Dirk van Dalen
Publisher: Springer Science & Business Media
ISBN: 1447145585
Category : Mathematics
Languages : en
Pages : 267

Get Book Here

Book Description
Dirk van Dalen’s popular textbook Logic and Structure, now in its fifth edition, provides a comprehensive introduction to the basics of classical and intuitionistic logic, model theory and Gödel’s famous incompleteness theorem. Propositional and predicate logic are presented in an easy-to-read style using Gentzen’s natural deduction. The book proceeds with some basic concepts and facts of model theory: a discussion on compactness, Skolem-Löwenheim, non-standard models and quantifier elimination. The discussion of classical logic is concluded with a concise exposition of second-order logic. In view of the growing recognition of constructive methods and principles, intuitionistic logic and Kripke semantics is carefully explored. A number of specific constructive features, such as apartness and equality, the Gödel translation, the disjunction and existence property are also included. The last chapter on Gödel's first incompleteness theorem is self-contained and provides a systematic exposition of the necessary recursion theory. This new edition has been properly revised and contains a new section on ultra-products.

Handbook of Practical Logic and Automated Reasoning

Handbook of Practical Logic and Automated Reasoning PDF Author: John Harrison
Publisher: Cambridge University Press
ISBN: 113947927X
Category : Computers
Languages : en
Pages : 683

Get Book Here

Book Description
The sheer complexity of computer systems has meant that automated reasoning, i.e. the ability of computers to perform logical inference, has become a vital component of program construction and of programming language design. This book meets the demand for a self-contained and broad-based account of the concepts, the machinery and the use of automated reasoning. The mathematical logic foundations are described in conjunction with practical application, all with the minimum of prerequisites. The approach is constructive, concrete and algorithmic: a key feature is that methods are described with reference to actual implementations (for which code is supplied) that readers can use, modify and experiment with. This book is ideally suited for those seeking a one-stop source for the general area of automated reasoning. It can be used as a reference, or as a place to learn the fundamentals, either in conjunction with advanced courses or for self study.

Handbook of Philosophical Logic

Handbook of Philosophical Logic PDF Author: Dov M. Gabbay
Publisher: Springer Science & Business Media
ISBN: 9400952031
Category : Philosophy
Languages : en
Pages : 527

Get Book Here

Book Description
This volume presents a number of systems of logic which can be considered as alternatives to classical logic. The notion of what counts as an alternative is a somewhat problematic one. There are extreme views on the matter of what is the 'correct' logical system and whether one logical system (e. g. classical logic) can represent (or contain) all the others. The choice of the systems presented in this volume was guided by the following criteria for including a logic as an alternative: (i) the departure from classical logic in accepting or rejecting certain theorems of classical logic following intuitions arising from significant application areas and/or from human reasoning; (ii) the alternative logic is well-established and well-understood mathematically and is widely applied in other disciplines such as mathematics, physics, computer science, philosophy, psychology, or linguistics. A number of other alternatives had to be omitted for the present volume (e. g. recent attempts to formulate so-called 'non-monotonic' reason ing systems). Perhaps these can be included in future extensions of the Handbook of Philosophical Logic. Chapter 1 deals with partial logics, that is, systems where sentences do not always have to be either true or false, and where terms do not always have to denote. These systems are thus, in general, geared towards reasoning in partially specified models. Logics of this type have arisen mainly from philo sophical and linguistic considerations; various applications in theoretical computer science have also been envisaged.

Logical Options

Logical Options PDF Author: John L. Bell
Publisher: Broadview Press
ISBN: 1551112973
Category : Philosophy
Languages : en
Pages : 313

Get Book Here

Book Description
Logical Options introduces the extensions and alternatives to classical logic which are most discussed in the philosophical literature: many-sorted logic, second-order logic, modal logics, intuitionistic logic, three-valued logic, fuzzy logic, and free logic. Each logic is introduced with a brief description of some aspect of its philosophical significance, and wherever possible semantic and proof methods are employed to facilitate comparison of the various systems. The book is designed to be useful for philosophy students and professional philosophers who have learned some classical first-order logic and would like to learn about other logics important to their philosophical work.

Lectures on the Curry-Howard Isomorphism

Lectures on the Curry-Howard Isomorphism PDF Author: Morten Heine Sørensen
Publisher: Elsevier
ISBN: 0080478921
Category : Mathematics
Languages : en
Pages : 457

Get Book Here

Book Description
The Curry-Howard isomorphism states an amazing correspondence between systems of formal logic as encountered in proof theory and computational calculi as found in type theory. For instance,minimal propositional logic corresponds to simply typed lambda-calculus, first-order logic corresponds to dependent types, second-order logic corresponds to polymorphic types, sequent calculus is related to explicit substitution, etc.The isomorphism has many aspects, even at the syntactic level:formulas correspond to types, proofs correspond to terms, provability corresponds to inhabitation, proof normalization corresponds to term reduction, etc.But there is more to the isomorphism than this. For instance, it is an old idea---due to Brouwer, Kolmogorov, and Heyting---that a constructive proof of an implication is a procedure that transformsproofs of the antecedent into proofs of the succedent; the Curry-Howard isomorphism gives syntactic representations of such procedures. The Curry-Howard isomorphism also provides theoretical foundations for many modern proof-assistant systems (e.g. Coq).This book give an introduction to parts of proof theory and related aspects of type theory relevant for the Curry-Howard isomorphism. It can serve as an introduction to any or both of typed lambda-calculus and intuitionistic logic.Key features- The Curry-Howard Isomorphism treated as common theme- Reader-friendly introduction to two complementary subjects: Lambda-calculus and constructive logics- Thorough study of the connection between calculi and logics- Elaborate study of classical logics and control operators- Account of dialogue games for classical and intuitionistic logic- Theoretical foundations of computer-assisted reasoning· The Curry-Howard Isomorphism treated as the common theme.· Reader-friendly introduction to two complementary subjects: lambda-calculus and constructive logics · Thorough study of the connection between calculi and logics.· Elaborate study of classical logics and control operators.· Account of dialogue games for classical and intuitionistic logic.· Theoretical foundations of computer-assisted reasoning

Logic and Structure

Logic and Structure PDF Author: Dirk van Dalen
Publisher: Springer Science & Business Media
ISBN: 3662023822
Category : Mathematics
Languages : en
Pages : 218

Get Book Here

Book Description
New corrected printing of a well-established text on logic at the introductory level.