Author: N. L. Carothers
Publisher: Cambridge University Press
ISBN: 0521842832
Category : Mathematics
Languages : en
Pages : 199
Book Description
Publisher Description
A Short Course on Banach Space Theory
Author: N. L. Carothers
Publisher: Cambridge University Press
ISBN: 0521842832
Category : Mathematics
Languages : en
Pages : 199
Book Description
Publisher Description
Publisher: Cambridge University Press
ISBN: 0521842832
Category : Mathematics
Languages : en
Pages : 199
Book Description
Publisher Description
A Short Course on Banach Space Theory
Author: N. L. Carothers
Publisher: Cambridge University Press
ISBN: 9780521603720
Category : Mathematics
Languages : en
Pages : 206
Book Description
Publisher Description
Publisher: Cambridge University Press
ISBN: 9780521603720
Category : Mathematics
Languages : en
Pages : 206
Book Description
Publisher Description
An Introduction to Banach Space Theory
Author: Robert E. Megginson
Publisher: Springer Science & Business Media
ISBN: 1461206030
Category : Mathematics
Languages : en
Pages : 613
Book Description
Preparing students for further study of both the classical works and current research, this is an accessible text for students who have had a course in real and complex analysis and understand the basic properties of L p spaces. It is sprinkled liberally with examples, historical notes, citations, and original sources, and over 450 exercises provide practice in the use of the results developed in the text through supplementary examples and counterexamples.
Publisher: Springer Science & Business Media
ISBN: 1461206030
Category : Mathematics
Languages : en
Pages : 613
Book Description
Preparing students for further study of both the classical works and current research, this is an accessible text for students who have had a course in real and complex analysis and understand the basic properties of L p spaces. It is sprinkled liberally with examples, historical notes, citations, and original sources, and over 450 exercises provide practice in the use of the results developed in the text through supplementary examples and counterexamples.
A Short Course on Spectral Theory
Author: William Arveson
Publisher: Springer Science & Business Media
ISBN: 0387953000
Category : Mathematics
Languages : en
Pages : 140
Book Description
This book presents the basic tools of modern analysis within the context of the fundamental problem of operator theory: to calculate spectra of specific operators on infinite dimensional spaces, especially operators on Hilbert spaces. The tools are diverse, and they provide the basis for more refined methods that allow one to approach problems that go well beyond the computation of spectra: the mathematical foundations of quantum physics, noncommutative K-theory, and the classification of simple C*-algebras being three areas of current research activity which require mastery of the material presented here.
Publisher: Springer Science & Business Media
ISBN: 0387953000
Category : Mathematics
Languages : en
Pages : 140
Book Description
This book presents the basic tools of modern analysis within the context of the fundamental problem of operator theory: to calculate spectra of specific operators on infinite dimensional spaces, especially operators on Hilbert spaces. The tools are diverse, and they provide the basis for more refined methods that allow one to approach problems that go well beyond the computation of spectra: the mathematical foundations of quantum physics, noncommutative K-theory, and the classification of simple C*-algebras being three areas of current research activity which require mastery of the material presented here.
Banach Space Theory
Author: Marián Fabian
Publisher: Springer Science & Business Media
ISBN: 1441975152
Category : Mathematics
Languages : en
Pages : 820
Book Description
Banach spaces provide a framework for linear and nonlinear functional analysis, operator theory, abstract analysis, probability, optimization and other branches of mathematics. This book introduces the reader to linear functional analysis and to related parts of infinite-dimensional Banach space theory. Key Features: - Develops classical theory, including weak topologies, locally convex space, Schauder bases and compact operator theory - Covers Radon-Nikodým property, finite-dimensional spaces and local theory on tensor products - Contains sections on uniform homeomorphisms and non-linear theory, Rosenthal's L1 theorem, fixed points, and more - Includes information about further topics and directions of research and some open problems at the end of each chapter - Provides numerous exercises for practice The text is suitable for graduate courses or for independent study. Prerequisites include basic courses in calculus and linear. Researchers in functional analysis will also benefit for this book as it can serve as a reference book.
Publisher: Springer Science & Business Media
ISBN: 1441975152
Category : Mathematics
Languages : en
Pages : 820
Book Description
Banach spaces provide a framework for linear and nonlinear functional analysis, operator theory, abstract analysis, probability, optimization and other branches of mathematics. This book introduces the reader to linear functional analysis and to related parts of infinite-dimensional Banach space theory. Key Features: - Develops classical theory, including weak topologies, locally convex space, Schauder bases and compact operator theory - Covers Radon-Nikodým property, finite-dimensional spaces and local theory on tensor products - Contains sections on uniform homeomorphisms and non-linear theory, Rosenthal's L1 theorem, fixed points, and more - Includes information about further topics and directions of research and some open problems at the end of each chapter - Provides numerous exercises for practice The text is suitable for graduate courses or for independent study. Prerequisites include basic courses in calculus and linear. Researchers in functional analysis will also benefit for this book as it can serve as a reference book.
Banach Spaces for Analysts
Author: P. Wojtaszczyk
Publisher: Cambridge University Press
ISBN: 9780521566759
Category : Mathematics
Languages : en
Pages : 400
Book Description
This book is intended to be used with graduate courses in Banach space theory.
Publisher: Cambridge University Press
ISBN: 9780521566759
Category : Mathematics
Languages : en
Pages : 400
Book Description
This book is intended to be used with graduate courses in Banach space theory.
Topics in Banach Space Theory
Author: Fernando Albiac
Publisher: Springer
ISBN: 3319315579
Category : Mathematics
Languages : en
Pages : 512
Book Description
This text provides the reader with the necessary technical tools and background to reach the frontiers of research without the introduction of too many extraneous concepts. Detailed and accessible proofs are included, as are a variety of exercises and problems. The two new chapters in this second edition are devoted to two topics of much current interest amongst functional analysts: Greedy approximation with respect to bases in Banach spaces and nonlinear geometry of Banach spaces. This new material is intended to present these two directions of research for their intrinsic importance within Banach space theory, and to motivate graduate students interested in learning more about them. This textbook assumes only a basic knowledge of functional analysis, giving the reader a self-contained overview of the ideas and techniques in the development of modern Banach space theory. Special emphasis is placed on the study of the classical Lebesgue spaces Lp (and their sequence space analogues) and spaces of continuous functions. The authors also stress the use of bases and basic sequences techniques as a tool for understanding the isomorphic structure of Banach spaces. From the reviews of the First Edition: "The authors of the book...succeeded admirably in creating a very helpful text, which contains essential topics with optimal proofs, while being reader friendly... It is also written in a lively manner, and its involved mathematical proofs are elucidated and illustrated by motivations, explanations and occasional historical comments... I strongly recommend to every graduate student who wants to get acquainted with this exciting part of functional analysis the instructive and pleasant reading of this book..."—Gilles Godefroy, Mathematical Reviews
Publisher: Springer
ISBN: 3319315579
Category : Mathematics
Languages : en
Pages : 512
Book Description
This text provides the reader with the necessary technical tools and background to reach the frontiers of research without the introduction of too many extraneous concepts. Detailed and accessible proofs are included, as are a variety of exercises and problems. The two new chapters in this second edition are devoted to two topics of much current interest amongst functional analysts: Greedy approximation with respect to bases in Banach spaces and nonlinear geometry of Banach spaces. This new material is intended to present these two directions of research for their intrinsic importance within Banach space theory, and to motivate graduate students interested in learning more about them. This textbook assumes only a basic knowledge of functional analysis, giving the reader a self-contained overview of the ideas and techniques in the development of modern Banach space theory. Special emphasis is placed on the study of the classical Lebesgue spaces Lp (and their sequence space analogues) and spaces of continuous functions. The authors also stress the use of bases and basic sequences techniques as a tool for understanding the isomorphic structure of Banach spaces. From the reviews of the First Edition: "The authors of the book...succeeded admirably in creating a very helpful text, which contains essential topics with optimal proofs, while being reader friendly... It is also written in a lively manner, and its involved mathematical proofs are elucidated and illustrated by motivations, explanations and occasional historical comments... I strongly recommend to every graduate student who wants to get acquainted with this exciting part of functional analysis the instructive and pleasant reading of this book..."—Gilles Godefroy, Mathematical Reviews
Homological Methods in Banach Space Theory
Author: Félix Cabello Sánchez
Publisher: Cambridge University Press
ISBN: 1108478581
Category : Mathematics
Languages : en
Pages : 561
Book Description
Approaches Banach space theory using methods from homological algebra, with concrete examples and proofs of many new and classical results.
Publisher: Cambridge University Press
ISBN: 1108478581
Category : Mathematics
Languages : en
Pages : 561
Book Description
Approaches Banach space theory using methods from homological algebra, with concrete examples and proofs of many new and classical results.
A Short Course on Operator Semigroups
Author: Klaus-Jochen Engel
Publisher: Springer Science & Business Media
ISBN: 0387313419
Category : Mathematics
Languages : en
Pages : 257
Book Description
The book offers a direct and up-to-date introduction to the theory of one-parameter semigroups of linear operators on Banach spaces. The book is intended for students and researchers who want to become acquainted with the concept of semigroups.
Publisher: Springer Science & Business Media
ISBN: 0387313419
Category : Mathematics
Languages : en
Pages : 257
Book Description
The book offers a direct and up-to-date introduction to the theory of one-parameter semigroups of linear operators on Banach spaces. The book is intended for students and researchers who want to become acquainted with the concept of semigroups.
A Primer on Hilbert Space Theory
Author: Carlo Alabiso
Publisher: Springer Nature
ISBN: 3030674177
Category : Science
Languages : en
Pages : 343
Book Description
This book offers an essential introduction to the theory of Hilbert space, a fundamental tool for non-relativistic quantum mechanics. Linear, topological, metric, and normed spaces are all addressed in detail, in a rigorous but reader-friendly fashion. The rationale for providing an introduction to the theory of Hilbert space, rather than a detailed study of Hilbert space theory itself, lies in the strenuous mathematics demands that even the simplest physical cases entail. Graduate courses in physics rarely offer enough time to cover the theory of Hilbert space and operators, as well as distribution theory, with sufficient mathematical rigor. Accordingly, compromises must be found between full rigor and the practical use of the instruments. Based on one of the authors’s lectures on functional analysis for graduate students in physics, the book will equip readers to approach Hilbert space and, subsequently, rigged Hilbert space, with a more practical attitude. It also includes a brief introduction to topological groups, and to other mathematical structures akin to Hilbert space. Exercises and solved problems accompany the main text, offering readers opportunities to deepen their understanding. The topics and their presentation have been chosen with the goal of quickly, yet rigorously and effectively, preparing readers for the intricacies of Hilbert space. Consequently, some topics, e.g., the Lebesgue integral, are treated in a somewhat unorthodox manner. The book is ideally suited for use in upper undergraduate and lower graduate courses, both in Physics and in Mathematics.
Publisher: Springer Nature
ISBN: 3030674177
Category : Science
Languages : en
Pages : 343
Book Description
This book offers an essential introduction to the theory of Hilbert space, a fundamental tool for non-relativistic quantum mechanics. Linear, topological, metric, and normed spaces are all addressed in detail, in a rigorous but reader-friendly fashion. The rationale for providing an introduction to the theory of Hilbert space, rather than a detailed study of Hilbert space theory itself, lies in the strenuous mathematics demands that even the simplest physical cases entail. Graduate courses in physics rarely offer enough time to cover the theory of Hilbert space and operators, as well as distribution theory, with sufficient mathematical rigor. Accordingly, compromises must be found between full rigor and the practical use of the instruments. Based on one of the authors’s lectures on functional analysis for graduate students in physics, the book will equip readers to approach Hilbert space and, subsequently, rigged Hilbert space, with a more practical attitude. It also includes a brief introduction to topological groups, and to other mathematical structures akin to Hilbert space. Exercises and solved problems accompany the main text, offering readers opportunities to deepen their understanding. The topics and their presentation have been chosen with the goal of quickly, yet rigorously and effectively, preparing readers for the intricacies of Hilbert space. Consequently, some topics, e.g., the Lebesgue integral, are treated in a somewhat unorthodox manner. The book is ideally suited for use in upper undergraduate and lower graduate courses, both in Physics and in Mathematics.