Author: Yuriy A. Garbovskiy
Publisher: Cambridge University Press
ISBN: 1316767345
Category : Science
Languages : en
Pages : 242
Book Description
A concise, yet deep introduction to experimental, geometrical optics, this book begins with fundamental concepts and then develops the practical skills and research techniques routinely used in modern laboratories. Suitable for students, researchers and optical engineers, this accessible text teaches readers how to build their own optical laboratory and to design and perform optical experiments. It uses a hands-on approach which fills a gap between theory-based textbooks and laboratory manuals, allowing the reader to develop their practical skills in this interdisciplinary field, and also explores the ways in which this knowledge can be applied to the design and production of commercial optical devices. Including supplementary online resources to help readers track and evaluate their experimental results, this text is the ideal companion for anyone with a practical interest in experimental geometrical optics.
A Practical Guide to Experimental Geometrical Optics
Author: Yuriy A. Garbovskiy
Publisher: Cambridge University Press
ISBN: 1316767345
Category : Science
Languages : en
Pages : 242
Book Description
A concise, yet deep introduction to experimental, geometrical optics, this book begins with fundamental concepts and then develops the practical skills and research techniques routinely used in modern laboratories. Suitable for students, researchers and optical engineers, this accessible text teaches readers how to build their own optical laboratory and to design and perform optical experiments. It uses a hands-on approach which fills a gap between theory-based textbooks and laboratory manuals, allowing the reader to develop their practical skills in this interdisciplinary field, and also explores the ways in which this knowledge can be applied to the design and production of commercial optical devices. Including supplementary online resources to help readers track and evaluate their experimental results, this text is the ideal companion for anyone with a practical interest in experimental geometrical optics.
Publisher: Cambridge University Press
ISBN: 1316767345
Category : Science
Languages : en
Pages : 242
Book Description
A concise, yet deep introduction to experimental, geometrical optics, this book begins with fundamental concepts and then develops the practical skills and research techniques routinely used in modern laboratories. Suitable for students, researchers and optical engineers, this accessible text teaches readers how to build their own optical laboratory and to design and perform optical experiments. It uses a hands-on approach which fills a gap between theory-based textbooks and laboratory manuals, allowing the reader to develop their practical skills in this interdisciplinary field, and also explores the ways in which this knowledge can be applied to the design and production of commercial optical devices. Including supplementary online resources to help readers track and evaluate their experimental results, this text is the ideal companion for anyone with a practical interest in experimental geometrical optics.
A Practical Guide to Experimental Geometrical Optics
Author: Yuriy A. Garbovskiy
Publisher: Cambridge University Press
ISBN: 110717094X
Category : Science
Languages : en
Pages : 241
Book Description
A concise, yet deep introduction to geometrical optics, developing the practical skills and research techniques routinely used in modern laboratories. Suitable for both students and self-learners, this accessible text teaches readers how to build their own optical laboratory, and design and perform optical experiments.
Publisher: Cambridge University Press
ISBN: 110717094X
Category : Science
Languages : en
Pages : 241
Book Description
A concise, yet deep introduction to geometrical optics, developing the practical skills and research techniques routinely used in modern laboratories. Suitable for both students and self-learners, this accessible text teaches readers how to build their own optical laboratory, and design and perform optical experiments.
An Introduction to Practical Laboratory Optics
Author: John Francis James
Publisher: Cambridge University Press
ISBN: 1107050545
Category : Science
Languages : en
Pages : 199
Book Description
Aimed at students taking practical laboratory courses in experimental optics, this book helps readers to understand the components within optical instruments. Topics covered range from the operation of lenses and mirrors to the laws which govern the design, layout and working of optical instruments.
Publisher: Cambridge University Press
ISBN: 1107050545
Category : Science
Languages : en
Pages : 199
Book Description
Aimed at students taking practical laboratory courses in experimental optics, this book helps readers to understand the components within optical instruments. Topics covered range from the operation of lenses and mirrors to the laws which govern the design, layout and working of optical instruments.
Particle Image Velocimetry
Author: Markus Raffel
Publisher: Springer
ISBN: 3662036371
Category : Science
Languages : en
Pages : 267
Book Description
Results from several applications of particle image velocimetry (PIV) to unsteady flows at a laboratory scale have been published, and commercial products are now available for more general laboratory use, but for certain industrially important applications, reliable equipment is often available only from in-house research and development teams. This PIV handbookis intended to transfer know-how from PIV development laboratories to end-users in industry and universities. The book discusses the scientific and technical aspects required to set up a PIV system, allows users to assess the problems involved in the application of PIV, and enables them to design, optimize, and use PIV systems to meet their special needs.
Publisher: Springer
ISBN: 3662036371
Category : Science
Languages : en
Pages : 267
Book Description
Results from several applications of particle image velocimetry (PIV) to unsteady flows at a laboratory scale have been published, and commercial products are now available for more general laboratory use, but for certain industrially important applications, reliable equipment is often available only from in-house research and development teams. This PIV handbookis intended to transfer know-how from PIV development laboratories to end-users in industry and universities. The book discusses the scientific and technical aspects required to set up a PIV system, allows users to assess the problems involved in the application of PIV, and enables them to design, optimize, and use PIV systems to meet their special needs.
Optics Experiments and Demonstrations for Student Laboratories
Author: Stephen G. Lipson
Publisher:
ISBN: 9780750323017
Category : Science
Languages : en
Pages : 0
Book Description
This book on the laboratory teaching of optics is based on the author's experience during many years in several universities and colleges. It describes basic experiments in optics that are suitable for student laboratories at undergraduate and graduate levels and do not require specialized equipment or measurement techniques.
Publisher:
ISBN: 9780750323017
Category : Science
Languages : en
Pages : 0
Book Description
This book on the laboratory teaching of optics is based on the author's experience during many years in several universities and colleges. It describes basic experiments in optics that are suitable for student laboratories at undergraduate and graduate levels and do not require specialized equipment or measurement techniques.
Useful Optics
Author: W. T. Welford
Publisher: University of Chicago Press
ISBN: 9780226893051
Category : Science
Languages : en
Pages : 164
Book Description
Students and professionals alike have long felt the need of a modern source of practical advice on the use of optical tools in scientific research. Walter T. Welford's Useful Optics meets this need. Welford offers a succinct review of principles basic to the construction and use of optics in physics. His lucid explanations and clear illustrations will particularly help those whose interests lie in other areas but who nevertheless must understand enough about optics to create the experimental apparatus necessary to their research. Consistently emphasizing applications and practical points of design, Welford covers a host of topics: mirrors and prisms, optical materials, aberration, the limits of image formation and resolution, illumination for image-forming systems, laser beams, interference and interferometry, detectors and light sources, holography, and more. The final chapter deals with putting together an experimental optics system. Many areas of the physical sciences and engineering increasingly demand an appreciation of optics. Welford's Useful Optics will prove indispensable to any researcher trying to develop and use effective optical apparatus. Walter T. Welford (1916-1990) was professor of physics at Imperial College of Science, Technology and Medicine from 1951 until his death. He was a Fellow of the Royal Society and of the Optical Society of America.
Publisher: University of Chicago Press
ISBN: 9780226893051
Category : Science
Languages : en
Pages : 164
Book Description
Students and professionals alike have long felt the need of a modern source of practical advice on the use of optical tools in scientific research. Walter T. Welford's Useful Optics meets this need. Welford offers a succinct review of principles basic to the construction and use of optics in physics. His lucid explanations and clear illustrations will particularly help those whose interests lie in other areas but who nevertheless must understand enough about optics to create the experimental apparatus necessary to their research. Consistently emphasizing applications and practical points of design, Welford covers a host of topics: mirrors and prisms, optical materials, aberration, the limits of image formation and resolution, illumination for image-forming systems, laser beams, interference and interferometry, detectors and light sources, holography, and more. The final chapter deals with putting together an experimental optics system. Many areas of the physical sciences and engineering increasingly demand an appreciation of optics. Welford's Useful Optics will prove indispensable to any researcher trying to develop and use effective optical apparatus. Walter T. Welford (1916-1990) was professor of physics at Imperial College of Science, Technology and Medicine from 1951 until his death. He was a Fellow of the Royal Society and of the Optical Society of America.
Engineering Optics
Author: Keigo Iizuka
Publisher: Springer
ISBN: 3540368086
Category : Science
Languages : en
Pages : 500
Book Description
The first edition of this textbook was published only last year, and now, the publisher has decided to issue a paperback edition. This is intended to make the text more affordable to everyone who would like to broaden their knowledge of modem problems in optics. The aim of this book is to provide a basic understanding of the impor tant features of the various topics treated. A detailed study of all the sub jects comprising the field of engineering optics would fill several volumes. This book could perhaps be likened to a soup: it is easy to swallow, but sooner or later heartier sustenance is needed. It is my hope that this book will stimulate your appetite and prepare you for the banquet that could be yours. I would like to take this opportunity to thank those readers, especially Mr. Branislav Petrovic, who sent me appreciative letters and helpful com ments. These have encouraged me to introduce a few minor changes and improvements in this edition.
Publisher: Springer
ISBN: 3540368086
Category : Science
Languages : en
Pages : 500
Book Description
The first edition of this textbook was published only last year, and now, the publisher has decided to issue a paperback edition. This is intended to make the text more affordable to everyone who would like to broaden their knowledge of modem problems in optics. The aim of this book is to provide a basic understanding of the impor tant features of the various topics treated. A detailed study of all the sub jects comprising the field of engineering optics would fill several volumes. This book could perhaps be likened to a soup: it is easy to swallow, but sooner or later heartier sustenance is needed. It is my hope that this book will stimulate your appetite and prepare you for the banquet that could be yours. I would like to take this opportunity to thank those readers, especially Mr. Branislav Petrovic, who sent me appreciative letters and helpful com ments. These have encouraged me to introduce a few minor changes and improvements in this edition.
A Guide to Experiments in Quantum Optics
Author: Hans-A. Bachor
Publisher: John Wiley & Sons
ISBN: 3527411933
Category : Science
Languages : en
Pages : 588
Book Description
Provides fully updated coverage of new experiments in quantum optics This fully revised and expanded edition of a well-established textbook on experiments on quantum optics covers new concepts, results, procedures, and developments in state-of-the-art experiments. It starts with the basic building blocks and ideas of quantum optics, then moves on to detailed procedures and new techniques for each experiment. Focusing on metrology, communications, and quantum logic, this new edition also places more emphasis on single photon technology and hybrid detection. In addition, it offers end-of-chapter summaries and full problem sets throughout. Beginning with an introduction to the subject, A Guide to Experiments in Quantum Optics, 3rd Edition presents readers with chapters on classical models of light, photons, quantum models of light, as well as basic optical components. It goes on to give readers full coverage of lasers and amplifiers, and examines numerous photodetection techniques being used today. Other chapters examine quantum noise, squeezing experiments, the application of squeezed light, and fundamental tests of quantum mechanics. The book finishes with a section on quantum information before summarizing of the contents and offering an outlook on the future of the field. -Provides all new updates to the field of quantum optics, covering the building blocks, models and concepts, latest results, detailed procedures, and modern experiments -Places emphasis on three major goals: metrology, communications, and quantum logic -Presents fundamental tests of quantum mechanics (Schrodinger Kitten, multimode entanglement, photon systems as quantum emulators), and introduces the density function -Includes new trends and technologies in quantum optics and photodetection, new results in sensing and metrology, and more coverage of quantum gates and logic, cluster states, waveguides for multimodes, discord and other quantum measures, and quantum control -Offers end of chapter summaries and problem sets as new features A Guide to Experiments in Quantum Optics, 3rd Edition is an ideal book for professionals, and graduate and upper level students in physics and engineering science.
Publisher: John Wiley & Sons
ISBN: 3527411933
Category : Science
Languages : en
Pages : 588
Book Description
Provides fully updated coverage of new experiments in quantum optics This fully revised and expanded edition of a well-established textbook on experiments on quantum optics covers new concepts, results, procedures, and developments in state-of-the-art experiments. It starts with the basic building blocks and ideas of quantum optics, then moves on to detailed procedures and new techniques for each experiment. Focusing on metrology, communications, and quantum logic, this new edition also places more emphasis on single photon technology and hybrid detection. In addition, it offers end-of-chapter summaries and full problem sets throughout. Beginning with an introduction to the subject, A Guide to Experiments in Quantum Optics, 3rd Edition presents readers with chapters on classical models of light, photons, quantum models of light, as well as basic optical components. It goes on to give readers full coverage of lasers and amplifiers, and examines numerous photodetection techniques being used today. Other chapters examine quantum noise, squeezing experiments, the application of squeezed light, and fundamental tests of quantum mechanics. The book finishes with a section on quantum information before summarizing of the contents and offering an outlook on the future of the field. -Provides all new updates to the field of quantum optics, covering the building blocks, models and concepts, latest results, detailed procedures, and modern experiments -Places emphasis on three major goals: metrology, communications, and quantum logic -Presents fundamental tests of quantum mechanics (Schrodinger Kitten, multimode entanglement, photon systems as quantum emulators), and introduces the density function -Includes new trends and technologies in quantum optics and photodetection, new results in sensing and metrology, and more coverage of quantum gates and logic, cluster states, waveguides for multimodes, discord and other quantum measures, and quantum control -Offers end of chapter summaries and problem sets as new features A Guide to Experiments in Quantum Optics, 3rd Edition is an ideal book for professionals, and graduate and upper level students in physics and engineering science.
Lenses and Waves
Author: Fokko Jan Dijksterhuis
Publisher: Springer Science & Business Media
ISBN: 1402026986
Category : Science
Languages : en
Pages : 294
Book Description
In 1690, Christiaan Huygens (1629-1695) published Traité de la Lumière, containing his renowned wave theory of light. It is considered a landmark in seventeenth-century science, for the way Huygens mathematized the corpuscular nature of light and his probabilistic conception of natural knowledge. This book discusses the development of Huygens' wave theory, reconstructing the winding road that eventually led to Traité de la Lumière. For the first time, the full range of manuscript sources is taken into account. In addition, the development of Huygens' thinking on the nature of light is put in the context of his optics as a whole, which was dominated by his lifelong pursuit of theoretical and practical dioptrics. In so doing, this book offers the first account of the development of Huygens' mathematical analysis of lenses and telescopes and its significance for the origin of the wave theory of light. As Huygens applied his mathematical proficiency to practical issues pertaining to telescopes – including trying to design a perfect telescope by means of mathematical theory – his dioptrics is significant for our understanding of seventeenth-century relations between theory and practice. With this full account of Huygens' optics, this book sheds new light on the history of seventeenth-century optics and the rise of the new mathematical sciences, as well as Huygens' oeuvre as a whole. Students of the history of optics, of early mathematical physics, and the Scientific Revolution, will find this book enlightening.
Publisher: Springer Science & Business Media
ISBN: 1402026986
Category : Science
Languages : en
Pages : 294
Book Description
In 1690, Christiaan Huygens (1629-1695) published Traité de la Lumière, containing his renowned wave theory of light. It is considered a landmark in seventeenth-century science, for the way Huygens mathematized the corpuscular nature of light and his probabilistic conception of natural knowledge. This book discusses the development of Huygens' wave theory, reconstructing the winding road that eventually led to Traité de la Lumière. For the first time, the full range of manuscript sources is taken into account. In addition, the development of Huygens' thinking on the nature of light is put in the context of his optics as a whole, which was dominated by his lifelong pursuit of theoretical and practical dioptrics. In so doing, this book offers the first account of the development of Huygens' mathematical analysis of lenses and telescopes and its significance for the origin of the wave theory of light. As Huygens applied his mathematical proficiency to practical issues pertaining to telescopes – including trying to design a perfect telescope by means of mathematical theory – his dioptrics is significant for our understanding of seventeenth-century relations between theory and practice. With this full account of Huygens' optics, this book sheds new light on the history of seventeenth-century optics and the rise of the new mathematical sciences, as well as Huygens' oeuvre as a whole. Students of the history of optics, of early mathematical physics, and the Scientific Revolution, will find this book enlightening.
A Practical Guide to Observational Astronomy
Author: M. Shane Burns
Publisher: CRC Press
ISBN: 1000434427
Category : Science
Languages : en
Pages : 175
Book Description
A Practical Guide to Observational Astronomy provides a practical and accessible introduction to the ideas and concepts that are essential to making and analyzing astronomical observations. A key emphasis of the book is on how modern astronomy would be impossible without the extensive use of computers, both for the control of astronomical instruments and the subsequent data analysis. Astronomers now need to use software to access and assess the data they produce, so understanding how to use computers to control equipment and analyze data is as crucial to modern astronomers as a telescope. Therefore, this book contains an array of practical problems for readers to test their knowledge, in addition to a wealth of examples and tutorials using Python on the author’s website, where readers can download and create image processing scripts. This is an excellent study guide or textbook for an observational astronomy course for advanced undergraduate and graduate astronomy and physics students familiar with writing and running simple Python scripts. Key Features Contains the latest developments and technologies from astronomical observatories and telescope facilities on the ground and in space Accompanied by a companion website with examples, tutorials, Python scripts, and resources Authored by an observational astronomer with over thirty years of observing and teaching experience About the Author M. Shane Burns earned his BA in physics at UC San Diego in 1979. He began graduate work at UC Berkeley in 1979, where he worked on an automated search for nearby supernovae. After being awarded a PhD in 1985, Professor Burns became a postdoctoral researcher at the University of Wyoming. He spent the summer of 1988 as a visiting scientist at Lawrence Berkeley National Lab, where he helped found the Supernova Cosmology Project (SCP). He continued to work as a member of the SCP group while a faculty member at Harvey Mudd College, the US Air Force Academy, and Colorado College. The 2011 Nobel Prize in Physics was awarded to the leader of the SCP for the group’s "discovery of the accelerating expansion of the Universe through observations of distant supernovae." During his career, Professor Burns has observed using essentially all of the world’s great observatories, including the Keck Observatory and the Hubble Space Telescope. Companion website for the book: https://mshaneburns.github.io/ObsAstro/
Publisher: CRC Press
ISBN: 1000434427
Category : Science
Languages : en
Pages : 175
Book Description
A Practical Guide to Observational Astronomy provides a practical and accessible introduction to the ideas and concepts that are essential to making and analyzing astronomical observations. A key emphasis of the book is on how modern astronomy would be impossible without the extensive use of computers, both for the control of astronomical instruments and the subsequent data analysis. Astronomers now need to use software to access and assess the data they produce, so understanding how to use computers to control equipment and analyze data is as crucial to modern astronomers as a telescope. Therefore, this book contains an array of practical problems for readers to test their knowledge, in addition to a wealth of examples and tutorials using Python on the author’s website, where readers can download and create image processing scripts. This is an excellent study guide or textbook for an observational astronomy course for advanced undergraduate and graduate astronomy and physics students familiar with writing and running simple Python scripts. Key Features Contains the latest developments and technologies from astronomical observatories and telescope facilities on the ground and in space Accompanied by a companion website with examples, tutorials, Python scripts, and resources Authored by an observational astronomer with over thirty years of observing and teaching experience About the Author M. Shane Burns earned his BA in physics at UC San Diego in 1979. He began graduate work at UC Berkeley in 1979, where he worked on an automated search for nearby supernovae. After being awarded a PhD in 1985, Professor Burns became a postdoctoral researcher at the University of Wyoming. He spent the summer of 1988 as a visiting scientist at Lawrence Berkeley National Lab, where he helped found the Supernova Cosmology Project (SCP). He continued to work as a member of the SCP group while a faculty member at Harvey Mudd College, the US Air Force Academy, and Colorado College. The 2011 Nobel Prize in Physics was awarded to the leader of the SCP for the group’s "discovery of the accelerating expansion of the Universe through observations of distant supernovae." During his career, Professor Burns has observed using essentially all of the world’s great observatories, including the Keck Observatory and the Hubble Space Telescope. Companion website for the book: https://mshaneburns.github.io/ObsAstro/