A Numerical Solution for the Interaction of a Moving Shock Wave with a Turbulent Mixing Region

A Numerical Solution for the Interaction of a Moving Shock Wave with a Turbulent Mixing Region PDF Author: William Fred Walker
Publisher:
ISBN:
Category : Shock waves
Languages : en
Pages : 216

Get Book Here

Book Description


ASME 68-APM-M

ASME 68-APM-M PDF Author: W. F. Walker
Publisher:
ISBN:
Category : Blast effect
Languages : en
Pages : 9

Get Book Here

Book Description


Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 892

Get Book Here

Book Description


Introduction to Simple Shock Waves in Air

Introduction to Simple Shock Waves in Air PDF Author: Seán Prunty
Publisher: Springer Nature
ISBN: 3030636062
Category : Science
Languages : en
Pages : 356

Get Book Here

Book Description
This book provides an elementary introduction to one-dimensional fluid flow problems involving shock waves in air. The differential equations of fluid flow are approximated by finite difference equations and these in turn are numerically integrated in a stepwise manner, with artificial viscosity introduced into the numerical calculations in order to deal with shocks. This treatment of the subject is focused on the finite-difference approach to solve the coupled differential equations of fluid flow and presents the results arising from the numerical solution using Mathcad programming. Both plane and spherical shock waves are discussed with particular emphasis on very strong explosive shocks in air. This expanded second edition features substantial new material on sound wave parameters, Riemann's method for numerical integration of the equations of motion, approximate analytical expressions for weak shock waves, short duration piston motion, numerical results for shock wave interactions, and new appendices on the piston withdrawal problem and numerical results for a closed shock tube. This text will appeal to students, researchers, and professionals in shock wave research and related fields. Students in particular will appreciate the benefits of numerical methods in fluid mechanics and the level of presentation.

Journal of Applied Mechanics

Journal of Applied Mechanics PDF Author:
Publisher:
ISBN:
Category : Mechanical engineering
Languages : en
Pages : 884

Get Book Here

Book Description
Publishes original research in all branches of mechanics including aerodynamics; aeroelasticity; boundary layers; computational mechanics; constitutive modeling of materials; dynamics; elasticity; flow and fracture; heat transfer; hydraulics; impact; internal flow; mechanical properties of materials; micromechanics; plasticity; stress analysis; structures; thermodynamics; turbulence; vibration; and wave propagation.

Shock Wave-Boundary-Layer Interactions

Shock Wave-Boundary-Layer Interactions PDF Author: Holger Babinsky
Publisher: Cambridge University Press
ISBN: 1139498649
Category : Technology & Engineering
Languages : en
Pages : 481

Get Book Here

Book Description
Shock wave-boundary-layer interaction (SBLI) is a fundamental phenomenon in gas dynamics that is observed in many practical situations, ranging from transonic aircraft wings to hypersonic vehicles and engines. SBLIs have the potential to pose serious problems in a flowfield; hence they often prove to be a critical - or even design limiting - issue for many aerospace applications. This is the first book devoted solely to a comprehensive, state-of-the-art explanation of this phenomenon. It includes a description of the basic fluid mechanics of SBLIs plus contributions from leading international experts who share their insight into their physics and the impact they have in practical flow situations. This book is for practitioners and graduate students in aerodynamics who wish to familiarize themselves with all aspects of SBLI flows. It is a valuable resource for specialists because it compiles experimental, computational and theoretical knowledge in one place.

Interaction Between a Normal Shock Wave and a Turbulent Boundary Layer at High, Transonic Speeds

Interaction Between a Normal Shock Wave and a Turbulent Boundary Layer at High, Transonic Speeds PDF Author: Thomas Charles Adamson
Publisher:
ISBN:
Category : Shock waves
Languages : en
Pages : 152

Get Book Here

Book Description


Numerical Simulations of the Shock Wave-boundary Layer Interactions

Numerical Simulations of the Shock Wave-boundary Layer Interactions PDF Author: Ismaïl Ben Hassan Saïdi
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Situations where an incident shock wave impinges upon a boundary layer are common in the aeronautical and spatial industries. Under certain circumstances (High Mach number, large shock angle...), the interaction between an incident shock wave and a boundary layer may create an unsteady separation bubble. This bubble, as well as the subsequent reflected shock wave, are known to oscillate in a low-frequency streamwise motion. This phenomenon, called the unsteadiness of the shock wave boundary layer interaction (SWBLI), subjects structures to oscillating loads that can lead to damages for the solid structure integrity.The aim of the present work is the unsteady numerical simulation of (SWBLI) in order to contribute to a better understanding of the SWBLI unsteadiness and the physical mechanism causing these low frequency oscillations of the interaction zone.To perform this study, an original numerical approach is used. The one step Finite Volume approach relies on the discretization of the convective fluxes of the Navier Stokes equations using the OSMP scheme developed up to the 7-th order both in space and time, the viscous fluxes being discretized using a standard centered Finite-Difference scheme. A Monotonicity-Preserving (MP) constraint is employed as a shock capturing procedure. The validation of this approach demonstrates the correct accuracy of the OSMP scheme to predict turbulent features and the great efficiency of the MP procedure to capture discontinuities without spoiling the solution and with an almost negligible additional cost. It is also shown that the use of the highest order tested of the OSMP scheme is relevant in term of simulation time and accuracy compromise. Moreover, an order of accuracy higher than 2-nd order for approximating the diffusive fluxes seems to have a negligible influence on the solution for such relatively high Reynolds numbers.By simulating the 3D unsteady interaction between a laminar boundary layer and an incident shock wave, we suppress the suspected influence of the large turbulent structures of the boundary layer on the SWBLI unsteadiness, the only remaining suspected cause of unsteadiness being the dynamics of the separation bubble. Results show that only the reattachment point oscillates at low frequencies characteristic of the breathing of the separation bubble. The separation point of the recirculation bubble and the foot of the reflected shock wave have a fixed location along the flat plate with respect to time. It shows that, in this configuration, the SWBLI unsteadiness is not observed.In order to reproduce and analyse the SWBLI unsteadiness, the simulation of a shock wave turbulent boundary layer interaction (SWTBLI) is performed. A Synthetic Eddy Method (SEM), adapted to compressible flows, has been developed and used at the inlet of the simulation domain for initiating the turbulent boundary layer without prohibitive additional computational costs. Analyses of the results are performed using, among others, the snapshot Proper Orthogonal Decomposition (POD) technique. For this simulation, the SWBLI unsteadiness has been observed. Results suggest that the dominant flapping mode of the recirculation bubble occurs at medium frequency. These cycles of successive enlargement and shrinkage of the separated zone are shown to be irregular in time, the maximum size of the recirculation bubble being submitted to discrepancies between successive cycles. This behaviour of the separation bubble is responsible for a low frequency temporal modulation of the amplitude of the separation and reattachment point motions and thus for the low frequency breathing of the separation bubble. These results tend to suggest that the SWBLI unsteadiness is related to this low frequency dynamics of the recirculation bubble; the oscillations of the reflected shocks foot being in phase with the motion of the separation point.

Environmental Enginering Abstracts

Environmental Enginering Abstracts PDF Author: Sanida Laboratories. Simulated Environments Information Center
Publisher:
ISBN:
Category : Buildings
Languages : en
Pages : 40

Get Book Here

Book Description


NASA Technical Note

NASA Technical Note PDF Author: United States. National Aeronautics and Space Administration
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1000

Get Book Here

Book Description