Author: Jeffrey S. West
Publisher:
ISBN:
Category : Combustion
Languages : en
Pages : 842
Book Description
A detailed numerical model of opposed-flow flame spread over solid fuels is developed. The model is used to study flame spread in three regimes of flame spread; the Thermal, Chemical Kinetic and Near Quiescent Regimes. Simplifying assumptions that have been historically applied to this problem are investigated and their effect on the flame spread rate and flame structure are quantified in each regime. A semi-empirical flame spread formula for thermally thick fuels is developed from knowledge of the dominant simplifying assumptions in this regime. Spread rate predictions compare well to experimental and computed results. This semi-empirical model provides field variables which previous theories are unable to predict. Mechanisms of heat transfer ahead of the flame are studied in each regime. Forward heat transfer though the solid fuel becomes more important in the Chemical Kinetic and Near Quiescent Regimes, a previously unknown result. The rate and path of forward heat transfer is found to depend strongly on simplifying assumptions and the flame anchor location. These results explain the relationship between previous analytical and experimental forward heat transfer results. A dimensionless criterion predicting the fuel thickness at which transition from thermally thick to thermally thin is developed which compares well with experimental and computed results. Finite-rate gas-phase chemical kinetics are found to be the cause of the super-thin regime of flame spread. A formula for the limiting flame spread rate in this regime is developed. Correlation of computed spread rates with the Damkohler number is revisited. Uncertainty in residence time due to uncertainties in characteristic velocity and gas-phase properties is found to be the cause of spread in the correlation. The Damkohler number alone explains variations in many parameters although it alone cannot explain changes in gas-phase activation energy. The boundary between the Near Quiescent and Thermal Regime is quantified using a dimensionless radiation number. A new extinction limit for thick fuels in the Near Quiescent Regime is discovered. Radiative losses cause the flame to grow small and spread so slowly that sufficient oxygen is not available to sustain the flame. Recent experimental results confirm this conclusion.
Forced Opposed Flow Flame Spread Over Flat Solid Fuels in the Thermal, Near Quiescent and Chemical Kinetic Regimes
Author: Jeffrey S. West
Publisher:
ISBN:
Category : Combustion
Languages : en
Pages : 842
Book Description
A detailed numerical model of opposed-flow flame spread over solid fuels is developed. The model is used to study flame spread in three regimes of flame spread; the Thermal, Chemical Kinetic and Near Quiescent Regimes. Simplifying assumptions that have been historically applied to this problem are investigated and their effect on the flame spread rate and flame structure are quantified in each regime. A semi-empirical flame spread formula for thermally thick fuels is developed from knowledge of the dominant simplifying assumptions in this regime. Spread rate predictions compare well to experimental and computed results. This semi-empirical model provides field variables which previous theories are unable to predict. Mechanisms of heat transfer ahead of the flame are studied in each regime. Forward heat transfer though the solid fuel becomes more important in the Chemical Kinetic and Near Quiescent Regimes, a previously unknown result. The rate and path of forward heat transfer is found to depend strongly on simplifying assumptions and the flame anchor location. These results explain the relationship between previous analytical and experimental forward heat transfer results. A dimensionless criterion predicting the fuel thickness at which transition from thermally thick to thermally thin is developed which compares well with experimental and computed results. Finite-rate gas-phase chemical kinetics are found to be the cause of the super-thin regime of flame spread. A formula for the limiting flame spread rate in this regime is developed. Correlation of computed spread rates with the Damkohler number is revisited. Uncertainty in residence time due to uncertainties in characteristic velocity and gas-phase properties is found to be the cause of spread in the correlation. The Damkohler number alone explains variations in many parameters although it alone cannot explain changes in gas-phase activation energy. The boundary between the Near Quiescent and Thermal Regime is quantified using a dimensionless radiation number. A new extinction limit for thick fuels in the Near Quiescent Regime is discovered. Radiative losses cause the flame to grow small and spread so slowly that sufficient oxygen is not available to sustain the flame. Recent experimental results confirm this conclusion.
Publisher:
ISBN:
Category : Combustion
Languages : en
Pages : 842
Book Description
A detailed numerical model of opposed-flow flame spread over solid fuels is developed. The model is used to study flame spread in three regimes of flame spread; the Thermal, Chemical Kinetic and Near Quiescent Regimes. Simplifying assumptions that have been historically applied to this problem are investigated and their effect on the flame spread rate and flame structure are quantified in each regime. A semi-empirical flame spread formula for thermally thick fuels is developed from knowledge of the dominant simplifying assumptions in this regime. Spread rate predictions compare well to experimental and computed results. This semi-empirical model provides field variables which previous theories are unable to predict. Mechanisms of heat transfer ahead of the flame are studied in each regime. Forward heat transfer though the solid fuel becomes more important in the Chemical Kinetic and Near Quiescent Regimes, a previously unknown result. The rate and path of forward heat transfer is found to depend strongly on simplifying assumptions and the flame anchor location. These results explain the relationship between previous analytical and experimental forward heat transfer results. A dimensionless criterion predicting the fuel thickness at which transition from thermally thick to thermally thin is developed which compares well with experimental and computed results. Finite-rate gas-phase chemical kinetics are found to be the cause of the super-thin regime of flame spread. A formula for the limiting flame spread rate in this regime is developed. Correlation of computed spread rates with the Damkohler number is revisited. Uncertainty in residence time due to uncertainties in characteristic velocity and gas-phase properties is found to be the cause of spread in the correlation. The Damkohler number alone explains variations in many parameters although it alone cannot explain changes in gas-phase activation energy. The boundary between the Near Quiescent and Thermal Regime is quantified using a dimensionless radiation number. A new extinction limit for thick fuels in the Near Quiescent Regime is discovered. Radiative losses cause the flame to grow small and spread so slowly that sufficient oxygen is not available to sustain the flame. Recent experimental results confirm this conclusion.
A Model of Concurrent Flow Flame Spread Over a Thin Solid Fuel
Author: Paul Vincent Ferkul
Publisher:
ISBN:
Category :
Languages : en
Pages : 160
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 160
Book Description
Microgravity Combustion
Author: Howard D. Ross
Publisher: Elsevier
ISBN: 0080549977
Category : Technology & Engineering
Languages : en
Pages : 601
Book Description
This book provides an introduction to understanding combustion, the burning of a substance that produces heat and often light, in microgravity environments-i.e., environments with very low gravity such as outer space. Readers are presented with a compilation of worldwide findings from fifteen years of research and experimental tests in various low-gravity environments, including drop towers, aircraft, and space.Microgravity Combustion is unique in that no other book reviews low- gravity combustion research in such a comprehensive manner. It provides an excellent introduction for those researching in the fields of combustion, aerospace, and fluid and thermal sciences.* An introduction to the progress made in understanding combustion in a microgravity environment* Experimental, theoretical and computational findings of current combustion research* Tutorial concepts, such as scaling analysis* Worldwide microgravity research findings
Publisher: Elsevier
ISBN: 0080549977
Category : Technology & Engineering
Languages : en
Pages : 601
Book Description
This book provides an introduction to understanding combustion, the burning of a substance that produces heat and often light, in microgravity environments-i.e., environments with very low gravity such as outer space. Readers are presented with a compilation of worldwide findings from fifteen years of research and experimental tests in various low-gravity environments, including drop towers, aircraft, and space.Microgravity Combustion is unique in that no other book reviews low- gravity combustion research in such a comprehensive manner. It provides an excellent introduction for those researching in the fields of combustion, aerospace, and fluid and thermal sciences.* An introduction to the progress made in understanding combustion in a microgravity environment* Experimental, theoretical and computational findings of current combustion research* Tutorial concepts, such as scaling analysis* Worldwide microgravity research findings
Fluid Mechanics and Fluid Power – Contemporary Research
Author: Arun K. Saha
Publisher: Springer
ISBN: 8132227433
Category : Technology & Engineering
Languages : en
Pages : 1638
Book Description
This volume comprises the proceedings of the 42nd National and 5th International Conference on Fluid Mechanics and Fluid Power held at IIT Kanpur in December, 2014.The conference proceedings encapsulate the best deliberations held during the conference. The diversity of participation in the conference, from academia, industry and research laboratories reflects in the articles appearing in the volume. This contributed volume has articles from authors who have participated in the conference on thematic areas such as Fundamental Issues and Perspectives in Fluid Mechanics; Measurement Techniques and Instrumentation; Computational Fluid Dynamics; Instability, Transition and Turbulence; Turbomachinery; Multiphase Flows; Fluid‐Structure Interaction and Flow‐Induced Noise; Microfluidics; Bio‐inspired Fluid Mechanics; Internal Combustion Engines and Gas Turbines; and Specialized Topics. The contents of this volume will prove useful to researchers from industry and academia alike.
Publisher: Springer
ISBN: 8132227433
Category : Technology & Engineering
Languages : en
Pages : 1638
Book Description
This volume comprises the proceedings of the 42nd National and 5th International Conference on Fluid Mechanics and Fluid Power held at IIT Kanpur in December, 2014.The conference proceedings encapsulate the best deliberations held during the conference. The diversity of participation in the conference, from academia, industry and research laboratories reflects in the articles appearing in the volume. This contributed volume has articles from authors who have participated in the conference on thematic areas such as Fundamental Issues and Perspectives in Fluid Mechanics; Measurement Techniques and Instrumentation; Computational Fluid Dynamics; Instability, Transition and Turbulence; Turbomachinery; Multiphase Flows; Fluid‐Structure Interaction and Flow‐Induced Noise; Microfluidics; Bio‐inspired Fluid Mechanics; Internal Combustion Engines and Gas Turbines; and Specialized Topics. The contents of this volume will prove useful to researchers from industry and academia alike.
A Gallery of Combustion and Fire
Author: Charles E. Baukal, Jr.
Publisher: Cambridge University Press
ISBN: 1108660886
Category : Technology & Engineering
Languages : en
Pages : 193
Book Description
A Gallery of Combustion and Fire is the first book to provide a graphical perspective of the extremely visual phenomenon of combustion in full color. It is designed primarily to be used in parallel with, and supplement existing combustion textbooks that are usually in black and white, making it a challenge to visualize such a graphic phenomenon. Each image includes a description of how it was generated, which is detailed enough for the expert but simple enough for the novice. Processes range from small scale academic flames up to full scale industrial flames under a wide range of conditions such as low and normal gravity, atmospheric to high pressures, actual and simulated flames, and controlled and uncontrolled flames. Containing over 500 color images, with over 230 contributors from over 75 organizations, this volume is a valuable asset for experts and novices alike.
Publisher: Cambridge University Press
ISBN: 1108660886
Category : Technology & Engineering
Languages : en
Pages : 193
Book Description
A Gallery of Combustion and Fire is the first book to provide a graphical perspective of the extremely visual phenomenon of combustion in full color. It is designed primarily to be used in parallel with, and supplement existing combustion textbooks that are usually in black and white, making it a challenge to visualize such a graphic phenomenon. Each image includes a description of how it was generated, which is detailed enough for the expert but simple enough for the novice. Processes range from small scale academic flames up to full scale industrial flames under a wide range of conditions such as low and normal gravity, atmospheric to high pressures, actual and simulated flames, and controlled and uncontrolled flames. Containing over 500 color images, with over 230 contributors from over 75 organizations, this volume is a valuable asset for experts and novices alike.
NASA Technical Memorandum
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 492
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 492
Book Description
Physical Science Under Microgravity: Experiments on Board the SJ-10 Recoverable Satellite
Author: Wenrui Hu
Publisher: Springer Nature
ISBN: 9811313407
Category : Science
Languages : en
Pages : 395
Book Description
This book presents the physical science experiments in a space microgravity environment conducted on board the SJ-10 recoverable satellite, which was launched on April 6th, 2016 and recovered on April 18th, 2016. The experiments described were selected from ~100 proposals from various institutions in China and around the world, and have never previously been conducted in the respective fields. They involve fluid physics and materials science, and primarily investigate the kinetic properties of matter in a space microgravity environment. The book provides a comprehensive review of these experiments, as well as the mission’s execution, data collection, and scientific outcomes.
Publisher: Springer Nature
ISBN: 9811313407
Category : Science
Languages : en
Pages : 395
Book Description
This book presents the physical science experiments in a space microgravity environment conducted on board the SJ-10 recoverable satellite, which was launched on April 6th, 2016 and recovered on April 18th, 2016. The experiments described were selected from ~100 proposals from various institutions in China and around the world, and have never previously been conducted in the respective fields. They involve fluid physics and materials science, and primarily investigate the kinetic properties of matter in a space microgravity environment. The book provides a comprehensive review of these experiments, as well as the mission’s execution, data collection, and scientific outcomes.
Joint Meeting of the U.S. Sections of the Combustion Institute, Western States, Central States, Eastern States
Author:
Publisher:
ISBN:
Category : Combustion
Languages : en
Pages : 138
Book Description
Publisher:
ISBN:
Category : Combustion
Languages : en
Pages : 138
Book Description
Effects of Gas-phase Radiation and Detailed Kinetics on the Burning and Extinction of a Solid Fuel
Author: Jennifer L. Rhatigan
Publisher:
ISBN:
Category : Dynamics
Languages : en
Pages : 158
Book Description
This is the first attempt to analyze both radiation and detailed kinetics on the burning and extinction of a solid fuel in a stagnation-point diffusion flame. We present a detailed and comparatively accurate computational model of a solid fuel flame along with a quantitative study of the kinetics mechanism, radiation interactions, and the extinction limits of the flame. A detailed kinetics model for the burning of solid trioxane (a trimer of formaldehyde) is coupled with a narrowband radiation model, with carbon dioxide, carbon monoxide, and water vapor as the gas-phase participating media. The solution of the solid trioxane diffusion flame over the flammable regime is presented in some detail, as this is the first solution of a heterogeneous trioxane flame. We identify high-temperature and low-temperature reaction paths for the heterogeneous trioxane flame. We then compare the adiabatic solution to solutions that include surface radiation only and gas-phase and surface radiation using surface model.
Publisher:
ISBN:
Category : Dynamics
Languages : en
Pages : 158
Book Description
This is the first attempt to analyze both radiation and detailed kinetics on the burning and extinction of a solid fuel in a stagnation-point diffusion flame. We present a detailed and comparatively accurate computational model of a solid fuel flame along with a quantitative study of the kinetics mechanism, radiation interactions, and the extinction limits of the flame. A detailed kinetics model for the burning of solid trioxane (a trimer of formaldehyde) is coupled with a narrowband radiation model, with carbon dioxide, carbon monoxide, and water vapor as the gas-phase participating media. The solution of the solid trioxane diffusion flame over the flammable regime is presented in some detail, as this is the first solution of a heterogeneous trioxane flame. We identify high-temperature and low-temperature reaction paths for the heterogeneous trioxane flame. We then compare the adiabatic solution to solutions that include surface radiation only and gas-phase and surface radiation using surface model.
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1572
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1572
Book Description