Author: Vladimir Peller
Publisher: Springer Science & Business Media
ISBN: 0387216812
Category : Mathematics
Languages : en
Pages : 789
Book Description
The purpose of this book is to describe the theory of Hankel operators, one of the most important classes of operators on spaces of analytic func tions. Hankel operators can be defined as operators having infinite Hankel matrices (i. e. , matrices with entries depending only on the sum of the co ordinates) with respect to some orthonormal basis. Finite matrices with this property were introduced by Hankel, who found interesting algebraic properties of their determinants. One of the first results on infinite Han kel matrices was obtained by Kronecker, who characterized Hankel matri ces of finite rank as those whose entries are Taylor coefficients of rational functions. Since then Hankel operators (or matrices) have found numerous applications in classical problems of analysis, such as moment problems, orthogonal polynomials, etc. Hankel operators admit various useful realizations, such as operators on spaces of analytic functions, integral operators on function spaces on (0,00), operators on sequence spaces. In 1957 Nehari described the bounded Hankel operators on the sequence space £2. This description turned out to be very important and started the contemporary period of the study of Hankel operators. We begin the book with introductory Chapter 1, which defines Hankel operators and presents their basic properties. We consider different realiza tions of Hankel operators and important connections of Hankel operators with the spaces BMa and V MO, Sz. -Nagy-Foais functional model, re producing kernels of the Hardy class H2, moment problems, and Carleson imbedding operators.
Hankel Operators and Their Applications
Author: Vladimir Peller
Publisher: Springer Science & Business Media
ISBN: 0387216812
Category : Mathematics
Languages : en
Pages : 789
Book Description
The purpose of this book is to describe the theory of Hankel operators, one of the most important classes of operators on spaces of analytic func tions. Hankel operators can be defined as operators having infinite Hankel matrices (i. e. , matrices with entries depending only on the sum of the co ordinates) with respect to some orthonormal basis. Finite matrices with this property were introduced by Hankel, who found interesting algebraic properties of their determinants. One of the first results on infinite Han kel matrices was obtained by Kronecker, who characterized Hankel matri ces of finite rank as those whose entries are Taylor coefficients of rational functions. Since then Hankel operators (or matrices) have found numerous applications in classical problems of analysis, such as moment problems, orthogonal polynomials, etc. Hankel operators admit various useful realizations, such as operators on spaces of analytic functions, integral operators on function spaces on (0,00), operators on sequence spaces. In 1957 Nehari described the bounded Hankel operators on the sequence space £2. This description turned out to be very important and started the contemporary period of the study of Hankel operators. We begin the book with introductory Chapter 1, which defines Hankel operators and presents their basic properties. We consider different realiza tions of Hankel operators and important connections of Hankel operators with the spaces BMa and V MO, Sz. -Nagy-Foais functional model, re producing kernels of the Hardy class H2, moment problems, and Carleson imbedding operators.
Publisher: Springer Science & Business Media
ISBN: 0387216812
Category : Mathematics
Languages : en
Pages : 789
Book Description
The purpose of this book is to describe the theory of Hankel operators, one of the most important classes of operators on spaces of analytic func tions. Hankel operators can be defined as operators having infinite Hankel matrices (i. e. , matrices with entries depending only on the sum of the co ordinates) with respect to some orthonormal basis. Finite matrices with this property were introduced by Hankel, who found interesting algebraic properties of their determinants. One of the first results on infinite Han kel matrices was obtained by Kronecker, who characterized Hankel matri ces of finite rank as those whose entries are Taylor coefficients of rational functions. Since then Hankel operators (or matrices) have found numerous applications in classical problems of analysis, such as moment problems, orthogonal polynomials, etc. Hankel operators admit various useful realizations, such as operators on spaces of analytic functions, integral operators on function spaces on (0,00), operators on sequence spaces. In 1957 Nehari described the bounded Hankel operators on the sequence space £2. This description turned out to be very important and started the contemporary period of the study of Hankel operators. We begin the book with introductory Chapter 1, which defines Hankel operators and presents their basic properties. We consider different realiza tions of Hankel operators and important connections of Hankel operators with the spaces BMa and V MO, Sz. -Nagy-Foais functional model, re producing kernels of the Hardy class H2, moment problems, and Carleson imbedding operators.
An Introduction to Hankel Operators
Author: Jonathan R. Partington
Publisher: Cambridge University Press
ISBN: 9780521367912
Category : Mathematics
Languages : en
Pages : 116
Book Description
Hankel operators are of wide application in mathematics and engineering and this account of them is both elementary and rigorous.
Publisher: Cambridge University Press
ISBN: 9780521367912
Category : Mathematics
Languages : en
Pages : 116
Book Description
Hankel operators are of wide application in mathematics and engineering and this account of them is both elementary and rigorous.
Function Spaces, Interpolation Theory and Related Topics
Author: Michael Cwikel
Publisher: Walter de Gruyter
ISBN: 3110198053
Category : Mathematics
Languages : en
Pages : 473
Book Description
This volume contains 16 refereed research articles on function spaces, interpolation theory and related fields. Topics covered: theory of function spaces, Hankel-type and related operators, analysis on bounded symmetric domains, partial differential equations, Green functions, special functions, homogenization theory, Sobolev embeddings, Coxeter groups, spectral theory and wavelets. The book will be of interest to both researchers and graduate students working in interpolation theory, function spaces and operators, partial differential equations and analysis on bounded symmetric domains.
Publisher: Walter de Gruyter
ISBN: 3110198053
Category : Mathematics
Languages : en
Pages : 473
Book Description
This volume contains 16 refereed research articles on function spaces, interpolation theory and related fields. Topics covered: theory of function spaces, Hankel-type and related operators, analysis on bounded symmetric domains, partial differential equations, Green functions, special functions, homogenization theory, Sobolev embeddings, Coxeter groups, spectral theory and wavelets. The book will be of interest to both researchers and graduate students working in interpolation theory, function spaces and operators, partial differential equations and analysis on bounded symmetric domains.
Multivariable Operator Theory
Author: Raúl E. Curto
Publisher: American Mathematical Soc.
ISBN: 0821802984
Category : Mathematics
Languages : en
Pages : 396
Book Description
This is a collection of papers presented at a conference on multivariable operator theory. The articles contain contributions to a variety of areas and topics which may be viewed as forming an emerging new subject. This subject involves the study of geometric rather than topological invariants associated with the general theme of operator theory in several variables. This collection will spur further discussion among the different research groups.
Publisher: American Mathematical Soc.
ISBN: 0821802984
Category : Mathematics
Languages : en
Pages : 396
Book Description
This is a collection of papers presented at a conference on multivariable operator theory. The articles contain contributions to a variety of areas and topics which may be viewed as forming an emerging new subject. This subject involves the study of geometric rather than topological invariants associated with the general theme of operator theory in several variables. This collection will spur further discussion among the different research groups.
Projective Differential Geometry Old and New
Author: V. Ovsienko
Publisher: Cambridge University Press
ISBN: 9781139455916
Category : Mathematics
Languages : en
Pages : 276
Book Description
Ideas of projective geometry keep reappearing in seemingly unrelated fields of mathematics. The authors' main goal in this 2005 book is to emphasize connections between classical projective differential geometry and contemporary mathematics and mathematical physics. They also give results and proofs of classic theorems. Exercises play a prominent role: historical and cultural comments set the basic notions in a broader context. The book opens by discussing the Schwarzian derivative and its connection to the Virasoro algebra. One-dimensional projective differential geometry features strongly. Related topics include differential operators, the cohomology of the group of diffeomorphisms of the circle, and the classical four-vertex theorem. The classical theory of projective hypersurfaces is surveyed and related to some very recent results and conjectures. A final chapter considers various versions of multi-dimensional Schwarzian derivative. In sum, here is a rapid route for graduate students and researchers to the frontiers of current research in this evergreen subject.
Publisher: Cambridge University Press
ISBN: 9781139455916
Category : Mathematics
Languages : en
Pages : 276
Book Description
Ideas of projective geometry keep reappearing in seemingly unrelated fields of mathematics. The authors' main goal in this 2005 book is to emphasize connections between classical projective differential geometry and contemporary mathematics and mathematical physics. They also give results and proofs of classic theorems. Exercises play a prominent role: historical and cultural comments set the basic notions in a broader context. The book opens by discussing the Schwarzian derivative and its connection to the Virasoro algebra. One-dimensional projective differential geometry features strongly. Related topics include differential operators, the cohomology of the group of diffeomorphisms of the circle, and the classical four-vertex theorem. The classical theory of projective hypersurfaces is surveyed and related to some very recent results and conjectures. A final chapter considers various versions of multi-dimensional Schwarzian derivative. In sum, here is a rapid route for graduate students and researchers to the frontiers of current research in this evergreen subject.
Representation Theory and Noncommutative Harmonic Analysis II
Author: A.A. Kirillov
Publisher: Springer Science & Business Media
ISBN: 3662097567
Category : Mathematics
Languages : en
Pages : 274
Book Description
Two surveys introducing readers to the subjects of harmonic analysis on semi-simple spaces and group theoretical methods, and preparing them for the study of more specialised literature. This book will be very useful to students and researchers in mathematics, theoretical physics and those chemists dealing with quantum systems.
Publisher: Springer Science & Business Media
ISBN: 3662097567
Category : Mathematics
Languages : en
Pages : 274
Book Description
Two surveys introducing readers to the subjects of harmonic analysis on semi-simple spaces and group theoretical methods, and preparing them for the study of more specialised literature. This book will be very useful to students and researchers in mathematics, theoretical physics and those chemists dealing with quantum systems.
Perspectives on Noncommutative Geometry
Author: Masoud Khalkhali
Publisher: American Mathematical Soc.
ISBN: 0821848496
Category : Mathematics
Languages : en
Pages : 176
Book Description
This volume represents the proceedings of the Noncommutative Geometry Workshop that was held as part of the thematic program on operator algebras at the Fields Institute in May 2008. Pioneered by Alain Connes starting in the late 1970s, noncommutative geometry was originally inspired by global analysis, topology, operator algebras, and quantum physics. Its main applications were to settle some long-standing conjectures, such as the Novikov conjecture and the Baum-Connes conjecture. Next came the impact of spectral geometry and the way the spectrum of a geometric operator, like the Laplacian, holds information about the geometry and topology of a manifold, as in the celebrated Weyl law. This has now been vastly generalized through Connes' notion of spectral triples. Finally, recent years have witnessed the impact of number theory, algebraic geometry and the theory of motives, and quantum field theory on noncommutative geometry. Almost all of these aspects are touched upon with new results in the papers of this volume. This book is intended for graduate students and researchers in both mathematics and theoretical physics who are interested in noncommutative geometry and its applications.
Publisher: American Mathematical Soc.
ISBN: 0821848496
Category : Mathematics
Languages : en
Pages : 176
Book Description
This volume represents the proceedings of the Noncommutative Geometry Workshop that was held as part of the thematic program on operator algebras at the Fields Institute in May 2008. Pioneered by Alain Connes starting in the late 1970s, noncommutative geometry was originally inspired by global analysis, topology, operator algebras, and quantum physics. Its main applications were to settle some long-standing conjectures, such as the Novikov conjecture and the Baum-Connes conjecture. Next came the impact of spectral geometry and the way the spectrum of a geometric operator, like the Laplacian, holds information about the geometry and topology of a manifold, as in the celebrated Weyl law. This has now been vastly generalized through Connes' notion of spectral triples. Finally, recent years have witnessed the impact of number theory, algebraic geometry and the theory of motives, and quantum field theory on noncommutative geometry. Almost all of these aspects are touched upon with new results in the papers of this volume. This book is intended for graduate students and researchers in both mathematics and theoretical physics who are interested in noncommutative geometry and its applications.
Systems, Approximation, Singular Integral Operators, and Related Topics
Author: Alexander A. Borichev
Publisher: Birkhäuser
ISBN: 3034883625
Category : Computers
Languages : en
Pages : 536
Book Description
This book is devoted to some topical problems and applications of operator theory and its interplay with modern complex analysis. It consists of 20 selected survey papers that represent updated (mainly plenary) addresses to the IWOTA 2000 conference held at Bordeaux from June 13 to 16, 2000. The main subjects of the volume include: - spectral analysis of periodic differential operators and delay equations, stabilizing controllers, Fourier multipliers; - multivariable operator theory, model theory, commutant lifting theorems, coisometric realizations; - Hankel operators and forms; - operator algebras; - the Bellman function approach in singular integrals and harmonic analysis, singular integral operators and integral representations; - approximation in holomorphic spaces. These subjects are unified by the common "operator theoretic approach" and the systematic use of modern function theory techniques.
Publisher: Birkhäuser
ISBN: 3034883625
Category : Computers
Languages : en
Pages : 536
Book Description
This book is devoted to some topical problems and applications of operator theory and its interplay with modern complex analysis. It consists of 20 selected survey papers that represent updated (mainly plenary) addresses to the IWOTA 2000 conference held at Bordeaux from June 13 to 16, 2000. The main subjects of the volume include: - spectral analysis of periodic differential operators and delay equations, stabilizing controllers, Fourier multipliers; - multivariable operator theory, model theory, commutant lifting theorems, coisometric realizations; - Hankel operators and forms; - operator algebras; - the Bellman function approach in singular integrals and harmonic analysis, singular integral operators and integral representations; - approximation in holomorphic spaces. These subjects are unified by the common "operator theoretic approach" and the systematic use of modern function theory techniques.
Harmonic Analysis in China
Author: Minde Cheng
Publisher: Springer Science & Business Media
ISBN: 9401101418
Category : Mathematics
Languages : en
Pages : 320
Book Description
Harmonic Analysis in China is a collection of surveys and research papers written by distinguished Chinese mathematicians from within the People's Republic of China and expatriates. The book covers topics in analytic function spaces of several complex variables, integral transforms, harmonic analysis on classical Lie groups and manifolds, LP- estimates of the Cauchy-Riemann equations and wavelet transforms. The reader will also be able to trace the great influence of the late Professor Loo-keng Hua's ideas and methods on research into harmonic analysis on classical domains and the theory of functions of several complex variables. Western scientists will thus become acquainted with the unique features and future trends of harmonic analysis in China. Audience: Analysts, as well as engineers and physicists who use harmonic analysis.
Publisher: Springer Science & Business Media
ISBN: 9401101418
Category : Mathematics
Languages : en
Pages : 320
Book Description
Harmonic Analysis in China is a collection of surveys and research papers written by distinguished Chinese mathematicians from within the People's Republic of China and expatriates. The book covers topics in analytic function spaces of several complex variables, integral transforms, harmonic analysis on classical Lie groups and manifolds, LP- estimates of the Cauchy-Riemann equations and wavelet transforms. The reader will also be able to trace the great influence of the late Professor Loo-keng Hua's ideas and methods on research into harmonic analysis on classical domains and the theory of functions of several complex variables. Western scientists will thus become acquainted with the unique features and future trends of harmonic analysis in China. Audience: Analysts, as well as engineers and physicists who use harmonic analysis.
Journal of Nonlinear Mathematical Physics Vol. 14
Author:
Publisher: atlantis press
ISBN:
Category :
Languages : en
Pages : 647
Book Description
Publisher: atlantis press
ISBN:
Category :
Languages : en
Pages : 647
Book Description