Author: Andrew Walker
Publisher: Orient Blackswan
ISBN:
Category :
Languages : en
Pages : 508
Book Description
A New Course in Geometry
Author: Andrew Walker
Publisher: Orient Blackswan
ISBN:
Category :
Languages : en
Pages : 508
Book Description
Publisher: Orient Blackswan
ISBN:
Category :
Languages : en
Pages : 508
Book Description
A First Course in Geometry
Author: Edward T Walsh
Publisher: Courier Corporation
ISBN: 048679668X
Category : Mathematics
Languages : en
Pages : 404
Book Description
Suitable for college courses, this introductory text covers the language of mathematics, geometric sets of points, separation and angles, triangles, parallel lines, similarity, polygons and area, circles, and space and coordinate geometry. 1974 edition.
Publisher: Courier Corporation
ISBN: 048679668X
Category : Mathematics
Languages : en
Pages : 404
Book Description
Suitable for college courses, this introductory text covers the language of mathematics, geometric sets of points, separation and angles, triangles, parallel lines, similarity, polygons and area, circles, and space and coordinate geometry. 1974 edition.
A Course in Metric Geometry
Author: Dmitri Burago
Publisher: American Mathematical Society
ISBN: 1470468530
Category : Mathematics
Languages : en
Pages : 415
Book Description
“Metric geometry” is an approach to geometry based on the notion of length on a topological space. This approach experienced a very fast development in the last few decades and penetrated into many other mathematical disciplines, such as group theory, dynamical systems, and partial differential equations. The objective of this graduate textbook is twofold: to give a detailed exposition of basic notions and techniques used in the theory of length spaces, and, more generally, to offer an elementary introduction into a broad variety of geometrical topics related to the notion of distance, including Riemannian and Carnot-Carathéodory metrics, the hyperbolic plane, distance-volume inequalities, asymptotic geometry (large scale, coarse), Gromov hyperbolic spaces, convergence of metric spaces, and Alexandrov spaces (non-positively and non-negatively curved spaces). The authors tend to work with “easy-to-touch” mathematical objects using “easy-to-visualize” methods. The authors set a challenging goal of making the core parts of the book accessible to first-year graduate students. Most new concepts and methods are introduced and illustrated using simplest cases and avoiding technicalities. The book contains many exercises, which form a vital part of the exposition.
Publisher: American Mathematical Society
ISBN: 1470468530
Category : Mathematics
Languages : en
Pages : 415
Book Description
“Metric geometry” is an approach to geometry based on the notion of length on a topological space. This approach experienced a very fast development in the last few decades and penetrated into many other mathematical disciplines, such as group theory, dynamical systems, and partial differential equations. The objective of this graduate textbook is twofold: to give a detailed exposition of basic notions and techniques used in the theory of length spaces, and, more generally, to offer an elementary introduction into a broad variety of geometrical topics related to the notion of distance, including Riemannian and Carnot-Carathéodory metrics, the hyperbolic plane, distance-volume inequalities, asymptotic geometry (large scale, coarse), Gromov hyperbolic spaces, convergence of metric spaces, and Alexandrov spaces (non-positively and non-negatively curved spaces). The authors tend to work with “easy-to-touch” mathematical objects using “easy-to-visualize” methods. The authors set a challenging goal of making the core parts of the book accessible to first-year graduate students. Most new concepts and methods are introduced and illustrated using simplest cases and avoiding technicalities. The book contains many exercises, which form a vital part of the exposition.
Geometry: A Comprehensive Course
Author: Dan Pedoe
Publisher: Courier Corporation
ISBN: 0486131734
Category : Mathematics
Languages : en
Pages : 466
Book Description
Introduction to vector algebra in the plane; circles and coaxial systems; mappings of the Euclidean plane; similitudes, isometries, Moebius transformations, much more. Includes over 500 exercises.
Publisher: Courier Corporation
ISBN: 0486131734
Category : Mathematics
Languages : en
Pages : 466
Book Description
Introduction to vector algebra in the plane; circles and coaxial systems; mappings of the Euclidean plane; similitudes, isometries, Moebius transformations, much more. Includes over 500 exercises.
A Course in the Geometry of N Dimensions
Author: Maurice G. Kendall
Publisher: Courier Corporation
ISBN: 0486439275
Category : Mathematics
Languages : en
Pages : 82
Book Description
This text for undergraduate students provides a foundation for resolving proofs dependent on n-dimensional systems. The two-part treatment begins with simple figures in n dimensions and advances to examinations of the contents of hyperspheres, hyperellipsoids, hyperprisms, etc. The second part explores the mean in rectangular variation, the correlation coefficient in bivariate normal variation, Wishart's distribution, more. 1961 edition.
Publisher: Courier Corporation
ISBN: 0486439275
Category : Mathematics
Languages : en
Pages : 82
Book Description
This text for undergraduate students provides a foundation for resolving proofs dependent on n-dimensional systems. The two-part treatment begins with simple figures in n dimensions and advances to examinations of the contents of hyperspheres, hyperellipsoids, hyperprisms, etc. The second part explores the mean in rectangular variation, the correlation coefficient in bivariate normal variation, Wishart's distribution, more. 1961 edition.
A Course in Differential Geometry
Author: Thierry Aubin
Publisher: American Mathematical Soc.
ISBN: 082182709X
Category : Mathematics
Languages : en
Pages : 198
Book Description
This textbook for second-year graduate students is intended as an introduction to differential geometry with principal emphasis on Riemannian geometry. Chapter I explains basic definitions and gives the proofs of the important theorems of Whitney and Sard. Chapter II deals with vector fields and differential forms. Chapter III addresses integration of vector fields and p-plane fields. Chapter IV develops the notion of connection on a Riemannian manifold considered as a means to define parallel transport on the manifold. The author also discusses related notions of torsion and curvature, and gives a working knowledge of the covariant derivative. Chapter V specializes on Riemannian manifolds by deducing global properties from local properties of curvature, the final goal being to determine the manifold completely. Chapter VI explores some problems in PDEs suggested by the geometry of manifolds. The author is well-known for his significant contributions to the field of geometry and PDEs - particularly for his work on the Yamabe problem - and for his expository accounts on the subject. The text contains many problems and solutions, permitting the reader to apply the theorems and to see concrete developments of the abstract theory.
Publisher: American Mathematical Soc.
ISBN: 082182709X
Category : Mathematics
Languages : en
Pages : 198
Book Description
This textbook for second-year graduate students is intended as an introduction to differential geometry with principal emphasis on Riemannian geometry. Chapter I explains basic definitions and gives the proofs of the important theorems of Whitney and Sard. Chapter II deals with vector fields and differential forms. Chapter III addresses integration of vector fields and p-plane fields. Chapter IV develops the notion of connection on a Riemannian manifold considered as a means to define parallel transport on the manifold. The author also discusses related notions of torsion and curvature, and gives a working knowledge of the covariant derivative. Chapter V specializes on Riemannian manifolds by deducing global properties from local properties of curvature, the final goal being to determine the manifold completely. Chapter VI explores some problems in PDEs suggested by the geometry of manifolds. The author is well-known for his significant contributions to the field of geometry and PDEs - particularly for his work on the Yamabe problem - and for his expository accounts on the subject. The text contains many problems and solutions, permitting the reader to apply the theorems and to see concrete developments of the abstract theory.
The Four Pillars of Geometry
Author: John Stillwell
Publisher: Springer Science & Business Media
ISBN: 0387255303
Category : Mathematics
Languages : en
Pages : 240
Book Description
This book is unique in that it looks at geometry from 4 different viewpoints - Euclid-style axioms, linear algebra, projective geometry, and groups and their invariants Approach makes the subject accessible to readers of all mathematical tastes, from the visual to the algebraic Abundantly supplemented with figures and exercises
Publisher: Springer Science & Business Media
ISBN: 0387255303
Category : Mathematics
Languages : en
Pages : 240
Book Description
This book is unique in that it looks at geometry from 4 different viewpoints - Euclid-style axioms, linear algebra, projective geometry, and groups and their invariants Approach makes the subject accessible to readers of all mathematical tastes, from the visual to the algebraic Abundantly supplemented with figures and exercises
Geometry
Author: Harold R. Jacobs
Publisher: Macmillan
ISBN: 9780716743613
Category : Mathematics
Languages : en
Pages : 802
Book Description
Harold Jacobs’s Geometry created a revolution in the approach to teaching this subject, one that gave rise to many ideas now seen in the NCTM Standards. Since its publication nearly one million students have used this legendary text. Suitable for either classroom use or self-paced study, it uses innovative discussions, cartoons, anecdotes, examples, and exercises that unfailingly capture and hold student interest. This edition is the Jacobs for a new generation. It has all the features that have kept the text in class by itself for nearly 3 decades, all in a thoroughly revised, full-color presentation that shows today’s students how fun geometry can be. The text remains proof-based although the presentation is in the less formal paragraph format. The approach focuses on guided discovery to help students develop geometric intuition.
Publisher: Macmillan
ISBN: 9780716743613
Category : Mathematics
Languages : en
Pages : 802
Book Description
Harold Jacobs’s Geometry created a revolution in the approach to teaching this subject, one that gave rise to many ideas now seen in the NCTM Standards. Since its publication nearly one million students have used this legendary text. Suitable for either classroom use or self-paced study, it uses innovative discussions, cartoons, anecdotes, examples, and exercises that unfailingly capture and hold student interest. This edition is the Jacobs for a new generation. It has all the features that have kept the text in class by itself for nearly 3 decades, all in a thoroughly revised, full-color presentation that shows today’s students how fun geometry can be. The text remains proof-based although the presentation is in the less formal paragraph format. The approach focuses on guided discovery to help students develop geometric intuition.
Elementary College Geometry
Author: Henry Africk
Publisher:
ISBN: 9780759341906
Category : Geometry
Languages : en
Pages : 369
Book Description
Publisher:
ISBN: 9780759341906
Category : Geometry
Languages : en
Pages : 369
Book Description
Kiselev's Geometry
Author: Andreĭ Petrovich Kiselev
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 192
Book Description
This volume completes the English adaptation of a classical Russian textbook in elementary Euclidean geometry. The 1st volume subtitled "Book I. Planimetry" was published in 2006 (ISBN 0977985202). This 2nd volume (Book II. Stereometry) covers solid geometry, and contains a chapter on vectors, foundations, and introduction in non-Euclidean geometry added by the translator. The book intended for high-school and college students, and their teachers. Includes 317 exercises, index, and bibliography.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 192
Book Description
This volume completes the English adaptation of a classical Russian textbook in elementary Euclidean geometry. The 1st volume subtitled "Book I. Planimetry" was published in 2006 (ISBN 0977985202). This 2nd volume (Book II. Stereometry) covers solid geometry, and contains a chapter on vectors, foundations, and introduction in non-Euclidean geometry added by the translator. The book intended for high-school and college students, and their teachers. Includes 317 exercises, index, and bibliography.