Author: Tarek Echekki
Publisher:
ISBN:
Category : Eddies
Languages : en
Pages : 44
Book Description
A hybrid approach for large-eddy simulations (LES) of turbulent combustion with the One-Dimensional Turbulence (ODT) model is developed. The need for a structure-based approach can address some of the key challenges arising in the prediction of non-linear physics on the sub-grid scale. The implementation involves hybrid solutions of 3-D LES with 1-D solutions based on the ODT, with ODT elements embedded within the LES computational domain. The solutions require the coupling of LES and ODT, as well as the coupling of the different ODT 'processes'. The proposed methodology represents a fundamentally new framework to address sub-grid scale physics where statistical information cannot be represented in LES-resolved physics or cannot be assumed a priori. Numerical implementation issues are addressed, including a novel implementation of filtered advection for scalars and momentum. Validation studies based on the non-homogeneous auto-ignition show that the proposed framework and specific implementations yield excellent predictions of the physics.
A New Class of Hybrid Schemes Based on Large Eddy Simulation and Low-dimensional Stochastic Models
Author: Tarek Echekki
Publisher:
ISBN:
Category : Eddies
Languages : en
Pages : 44
Book Description
A hybrid approach for large-eddy simulations (LES) of turbulent combustion with the One-Dimensional Turbulence (ODT) model is developed. The need for a structure-based approach can address some of the key challenges arising in the prediction of non-linear physics on the sub-grid scale. The implementation involves hybrid solutions of 3-D LES with 1-D solutions based on the ODT, with ODT elements embedded within the LES computational domain. The solutions require the coupling of LES and ODT, as well as the coupling of the different ODT 'processes'. The proposed methodology represents a fundamentally new framework to address sub-grid scale physics where statistical information cannot be represented in LES-resolved physics or cannot be assumed a priori. Numerical implementation issues are addressed, including a novel implementation of filtered advection for scalars and momentum. Validation studies based on the non-homogeneous auto-ignition show that the proposed framework and specific implementations yield excellent predictions of the physics.
Publisher:
ISBN:
Category : Eddies
Languages : en
Pages : 44
Book Description
A hybrid approach for large-eddy simulations (LES) of turbulent combustion with the One-Dimensional Turbulence (ODT) model is developed. The need for a structure-based approach can address some of the key challenges arising in the prediction of non-linear physics on the sub-grid scale. The implementation involves hybrid solutions of 3-D LES with 1-D solutions based on the ODT, with ODT elements embedded within the LES computational domain. The solutions require the coupling of LES and ODT, as well as the coupling of the different ODT 'processes'. The proposed methodology represents a fundamentally new framework to address sub-grid scale physics where statistical information cannot be represented in LES-resolved physics or cannot be assumed a priori. Numerical implementation issues are addressed, including a novel implementation of filtered advection for scalars and momentum. Validation studies based on the non-homogeneous auto-ignition show that the proposed framework and specific implementations yield excellent predictions of the physics.
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 704
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 704
Book Description
DESider – A European Effort on Hybrid RANS-LES Modelling
Author: Werner Haase
Publisher: Springer Science & Business Media
ISBN: 3540927735
Category : Technology & Engineering
Languages : en
Pages : 469
Book Description
Preface “In aircraft design, efficiency is determined by the ability to accurately and rel- bly predict the occurrence of, and to model the development of, turbulent flows. Hence, the main objective in industrial computational fluid dynamics (CFD) is to increase the capabilities for an improved predictive accuracy for both complex flows and complex geometries”. This text part taken from Haase et al (2006), - scribing the results of the DESider predecessor project “FLOMANIA” is still - and will be in future valid. With an ever-increasing demand for faster, more reliable and cleaner aircraft, flight envelopes are necessarily shifted into areas of the flow regimes exhibiting highly unsteady and, for military aircraft, unstable flow behaviour. This undou- edly poses major new challenges in CFD; generally stated as an increased pred- tive accuracy whist retaining “affordable” computation times. Together with highly resolved meshes employing millions of nodes, numerical methods must have the inherent capability to predict unsteady flows. Although at present, (U)RANS methods are likely to remain as the workhorses in industry, the DESider project focussed on the development and combination of these approaches with LES methods in order to “bridge” the gap between the much more expensive (due to high Reynolds numbers in flight), but more accurate (full) LES.
Publisher: Springer Science & Business Media
ISBN: 3540927735
Category : Technology & Engineering
Languages : en
Pages : 469
Book Description
Preface “In aircraft design, efficiency is determined by the ability to accurately and rel- bly predict the occurrence of, and to model the development of, turbulent flows. Hence, the main objective in industrial computational fluid dynamics (CFD) is to increase the capabilities for an improved predictive accuracy for both complex flows and complex geometries”. This text part taken from Haase et al (2006), - scribing the results of the DESider predecessor project “FLOMANIA” is still - and will be in future valid. With an ever-increasing demand for faster, more reliable and cleaner aircraft, flight envelopes are necessarily shifted into areas of the flow regimes exhibiting highly unsteady and, for military aircraft, unstable flow behaviour. This undou- edly poses major new challenges in CFD; generally stated as an increased pred- tive accuracy whist retaining “affordable” computation times. Together with highly resolved meshes employing millions of nodes, numerical methods must have the inherent capability to predict unsteady flows. Although at present, (U)RANS methods are likely to remain as the workhorses in industry, the DESider project focussed on the development and combination of these approaches with LES methods in order to “bridge” the gap between the much more expensive (due to high Reynolds numbers in flight), but more accurate (full) LES.
Applied mechanics reviews
Author:
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 400
Book Description
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 400
Book Description
International Aerospace Abstracts
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 974
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 974
Book Description
AIAA Journal
Author: American Institute of Aeronautics and Astronautics
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1380
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1380
Book Description
Turbulent Shear Flows 8
Author: Franz Durst
Publisher: Springer Science & Business Media
ISBN: 3642776744
Category : Science
Languages : en
Pages : 419
Book Description
This volume contains a selection of the papers presented at the Eighth Symposium on Turbulent Shear Flows held at the Technical University of Munich, 9-11 September 1991. The first of these biennial international symposia was held at the Pennsylvania State Uni versity, USA, in 1977; subsequent symposia have been held at Imperial College, London, England; the University of California, Davis, USA; the University of Karlsruhe, Ger many; Cornell University, Ithaca, USA; the Paul Sabatier University, Toulouse, France; and Stanford University, California, USA. The purpose of this series of symposia is to provide a forum for the presentation and discussion of new developments in the field of turbulence, especially as related to shear flows of importance in engineering and geo physics. From the 330 extended abstracts submitted for this symposium, 145 papers were presented orally and 60 as posters. Out of these, we have selected twenty-four papers for inclusion in this volume, each of which has been revised and extended in accordance with the editors' recommendations. The following four theme areas were selected after consideration of the quality of the contributions, the importance of the area, and the selection made in earlier volumes: - wall flows, - separated flows, - compressibility effects, - buoyancy, rotation, and curvature effects. As in the past, each section corresponding to the above areas begins with an introduction by an authority in the field that places the individual contributions in context with one another and with related research.
Publisher: Springer Science & Business Media
ISBN: 3642776744
Category : Science
Languages : en
Pages : 419
Book Description
This volume contains a selection of the papers presented at the Eighth Symposium on Turbulent Shear Flows held at the Technical University of Munich, 9-11 September 1991. The first of these biennial international symposia was held at the Pennsylvania State Uni versity, USA, in 1977; subsequent symposia have been held at Imperial College, London, England; the University of California, Davis, USA; the University of Karlsruhe, Ger many; Cornell University, Ithaca, USA; the Paul Sabatier University, Toulouse, France; and Stanford University, California, USA. The purpose of this series of symposia is to provide a forum for the presentation and discussion of new developments in the field of turbulence, especially as related to shear flows of importance in engineering and geo physics. From the 330 extended abstracts submitted for this symposium, 145 papers were presented orally and 60 as posters. Out of these, we have selected twenty-four papers for inclusion in this volume, each of which has been revised and extended in accordance with the editors' recommendations. The following four theme areas were selected after consideration of the quality of the contributions, the importance of the area, and the selection made in earlier volumes: - wall flows, - separated flows, - compressibility effects, - buoyancy, rotation, and curvature effects. As in the past, each section corresponding to the above areas begins with an introduction by an authority in the field that places the individual contributions in context with one another and with related research.
An Introduction to Boundary Layer Meteorology
Author: Roland B. Stull
Publisher: Springer Science & Business Media
ISBN: 9789027727695
Category : Science
Languages : en
Pages : 688
Book Description
Part of the excitement in boundary-layer meteorology is the challenge associated with turbulent flow - one of the unsolved problems in classical physics. An additional attraction of the filed is the rich diversity of topics and research methods that are collected under the umbrella-term of boundary-layer meteorology. The flavor of the challenges and the excitement associated with the study of the atmospheric boundary layer are captured in this textbook. Fundamental concepts and mathematics are presented prior to their use, physical interpretations of the terms in equations are given, sample data are shown, examples are solved, and exercises are included. The work should also be considered as a major reference and as a review of the literature, since it includes tables of parameterizatlons, procedures, filed experiments, useful constants, and graphs of various phenomena under a variety of conditions. It is assumed that the work will be used at the beginning graduate level for students with an undergraduate background in meteorology, but the author envisions, and has catered for, a heterogeneity in the background and experience of his readers.
Publisher: Springer Science & Business Media
ISBN: 9789027727695
Category : Science
Languages : en
Pages : 688
Book Description
Part of the excitement in boundary-layer meteorology is the challenge associated with turbulent flow - one of the unsolved problems in classical physics. An additional attraction of the filed is the rich diversity of topics and research methods that are collected under the umbrella-term of boundary-layer meteorology. The flavor of the challenges and the excitement associated with the study of the atmospheric boundary layer are captured in this textbook. Fundamental concepts and mathematics are presented prior to their use, physical interpretations of the terms in equations are given, sample data are shown, examples are solved, and exercises are included. The work should also be considered as a major reference and as a review of the literature, since it includes tables of parameterizatlons, procedures, filed experiments, useful constants, and graphs of various phenomena under a variety of conditions. It is assumed that the work will be used at the beginning graduate level for students with an undergraduate background in meteorology, but the author envisions, and has catered for, a heterogeneity in the background and experience of his readers.
Implicit Large Eddy Simulation
Author: Fernando F. Grinstein
Publisher: Cambridge University Press
ISBN: 9780521172721
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
The numerical simulation of turbulent flows is a subject of great practical importance to scientists and engineers. The difficulty in achieving predictive simulations is perhaps best illustrated by the wide range of approaches that have been developed and are still being used by the turbulence modeling community. In this book the authors describe one of these approaches, Implicit Large Eddy Simulation (ILES). ILES is a relatively new approach that combines generality and computational efficiency with documented success in many areas of complex fluid flow. This book synthesizes the theoretical basis of the ILES methodology and reviews its accomplishments. ILES pioneers and lead researchers combine here their experience to present a comprehensive description of the methodology. This book should be of fundamental interest to graduate students, basic research scientists, as well as professionals involved in the design and analysis of complex turbulent flows.
Publisher: Cambridge University Press
ISBN: 9780521172721
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
The numerical simulation of turbulent flows is a subject of great practical importance to scientists and engineers. The difficulty in achieving predictive simulations is perhaps best illustrated by the wide range of approaches that have been developed and are still being used by the turbulence modeling community. In this book the authors describe one of these approaches, Implicit Large Eddy Simulation (ILES). ILES is a relatively new approach that combines generality and computational efficiency with documented success in many areas of complex fluid flow. This book synthesizes the theoretical basis of the ILES methodology and reviews its accomplishments. ILES pioneers and lead researchers combine here their experience to present a comprehensive description of the methodology. This book should be of fundamental interest to graduate students, basic research scientists, as well as professionals involved in the design and analysis of complex turbulent flows.
Technical Literature Abstracts
Author: Society of Automotive Engineers
Publisher:
ISBN:
Category : Technical literature
Languages : en
Pages : 474
Book Description
Publisher:
ISBN:
Category : Technical literature
Languages : en
Pages : 474
Book Description