Author: Évariste Galois
Publisher: European Mathematical Society
ISBN: 9783037191040
Category : Mathematics
Languages : en
Pages : 426
Book Description
Before he died at the age of twenty, shot in a mysterious early-morning duel at the end of May 1832, Evariste Galois created mathematics that changed the direction of algebra. This book contains English translations of almost all the Galois material. The translations are presented alongside a new transcription of the original French and are enhanced by three levels of commentary. An introduction explains the context of Galois' work, the various publications in which it appears, and the vagaries of his manuscripts. Then there is a chapter in which the five mathematical articles published in his lifetime are reprinted. After that come the testamentary letter and the first memoir (in which Galois expounded on the ideas that led to Galois Theory), which are the most famous of the manuscripts. These are followed by the second memoir and other lesser known manuscripts. This book makes available to a wide mathematical and historical readership some of the most exciting mathematics of the first half of the nineteenth century, presented in its original form. The primary aim is to establish a text of what Galois wrote. The details of what he did, the proper evidence of his genius, deserve to be well understood and appreciated by mathematicians as well as historians of mathematics.
The Mathematical Writings of Évariste Galois
Author: Évariste Galois
Publisher: European Mathematical Society
ISBN: 9783037191040
Category : Mathematics
Languages : en
Pages : 426
Book Description
Before he died at the age of twenty, shot in a mysterious early-morning duel at the end of May 1832, Evariste Galois created mathematics that changed the direction of algebra. This book contains English translations of almost all the Galois material. The translations are presented alongside a new transcription of the original French and are enhanced by three levels of commentary. An introduction explains the context of Galois' work, the various publications in which it appears, and the vagaries of his manuscripts. Then there is a chapter in which the five mathematical articles published in his lifetime are reprinted. After that come the testamentary letter and the first memoir (in which Galois expounded on the ideas that led to Galois Theory), which are the most famous of the manuscripts. These are followed by the second memoir and other lesser known manuscripts. This book makes available to a wide mathematical and historical readership some of the most exciting mathematics of the first half of the nineteenth century, presented in its original form. The primary aim is to establish a text of what Galois wrote. The details of what he did, the proper evidence of his genius, deserve to be well understood and appreciated by mathematicians as well as historians of mathematics.
Publisher: European Mathematical Society
ISBN: 9783037191040
Category : Mathematics
Languages : en
Pages : 426
Book Description
Before he died at the age of twenty, shot in a mysterious early-morning duel at the end of May 1832, Evariste Galois created mathematics that changed the direction of algebra. This book contains English translations of almost all the Galois material. The translations are presented alongside a new transcription of the original French and are enhanced by three levels of commentary. An introduction explains the context of Galois' work, the various publications in which it appears, and the vagaries of his manuscripts. Then there is a chapter in which the five mathematical articles published in his lifetime are reprinted. After that come the testamentary letter and the first memoir (in which Galois expounded on the ideas that led to Galois Theory), which are the most famous of the manuscripts. These are followed by the second memoir and other lesser known manuscripts. This book makes available to a wide mathematical and historical readership some of the most exciting mathematics of the first half of the nineteenth century, presented in its original form. The primary aim is to establish a text of what Galois wrote. The details of what he did, the proper evidence of his genius, deserve to be well understood and appreciated by mathematicians as well as historians of mathematics.
Proceedings
Author: American Association for the Advancement of Science
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 644
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 644
Book Description
The Monist
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 738
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 738
Book Description
Proceedings of the American Association for the Advancement of Science
Author: American Association for the Advancement of Science
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 648
Book Description
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 648
Book Description
A Memoir of the Theory of Mathematical Form
Author: Alfred Bray Kempe
Publisher:
ISBN:
Category : Geometry
Languages : en
Pages : 82
Book Description
Publisher:
ISBN:
Category : Geometry
Languages : en
Pages : 82
Book Description
Proceedings of the Royal Society of London
Author: Royal Society (Great Britain)
Publisher:
ISBN:
Category : Electronic journals
Languages : en
Pages : 596
Book Description
Publisher:
ISBN:
Category : Electronic journals
Languages : en
Pages : 596
Book Description
Generators and Relations for Discrete Groups
Author: Harold S.M. Coxeter
Publisher: Springer Science & Business Media
ISBN: 3662219468
Category : Mathematics
Languages : en
Pages : 174
Book Description
When we began to consider the scope of this book, we envisaged a catalogue supplying at least one abstract definition for any finitely generated group that the reader might propose. But we soon realized that more or less arbitrary restrietions are necessary, because interesting groups are so numerous. For permutation groups of degree 8 or less (i.e., .subgroups of 2: ), the reader cannot do better than consult the 8 tables of ]OSEPHINE BURNS (1915), while keeping an eye open for misprints. Our own tables (on pages 134-142) deal with groups of low order, finite and infinite groups ()f congruent transformations, symmetrie and alternating groups, linear fractional groups, and groups generated by reflections in real Euclidean space of any number of dimensions. The best substitute for a more extensive catalogue is the description (in Chapter 2) of a method whereby the reader can easily work out his own abstract definition for almost any given finite group. This method is sufficiently mechanical for the use of an electronic computer.
Publisher: Springer Science & Business Media
ISBN: 3662219468
Category : Mathematics
Languages : en
Pages : 174
Book Description
When we began to consider the scope of this book, we envisaged a catalogue supplying at least one abstract definition for any finitely generated group that the reader might propose. But we soon realized that more or less arbitrary restrietions are necessary, because interesting groups are so numerous. For permutation groups of degree 8 or less (i.e., .subgroups of 2: ), the reader cannot do better than consult the 8 tables of ]OSEPHINE BURNS (1915), while keeping an eye open for misprints. Our own tables (on pages 134-142) deal with groups of low order, finite and infinite groups ()f congruent transformations, symmetrie and alternating groups, linear fractional groups, and groups generated by reflections in real Euclidean space of any number of dimensions. The best substitute for a more extensive catalogue is the description (in Chapter 2) of a method whereby the reader can easily work out his own abstract definition for almost any given finite group. This method is sufficiently mechanical for the use of an electronic computer.
Mathematics (Education) in the Information Age
Author: Stacy A. Costa
Publisher: Springer Nature
ISBN: 3030591778
Category : Mathematics
Languages : en
Pages : 231
Book Description
This book brings together ideas from experts in cognitive science, mathematics, and mathematics education to discuss these issues and to present research on how mathematics and its learning and teaching are evolving in the Information Age. Given the ever-broadening trends in Artificial Intelligence and the processing of information generally, the aim is to assess their implications for how math is evolving and how math should now be taught to a generation that has been reared in the Information Age. It will also look at the ever-spreading assumption that human intelligence may not be unique—an idea that dovetails with current philosophies of mind such as posthumanism and transhumanism. The role of technology in human evolution has become critical in the contemporary world. Therefore, a subgoal of this book is to illuminate how humans now use their sophisticated technologies to chart cognitive and social progress. Given the interdisciplinary nature of the chapters, this will be of interest to all kinds of readers, from mathematicians themselves working increasingly with computer scientists, to cognitive scientists who carry out research on mathematics cognition and teachers of mathematics in a classroom.
Publisher: Springer Nature
ISBN: 3030591778
Category : Mathematics
Languages : en
Pages : 231
Book Description
This book brings together ideas from experts in cognitive science, mathematics, and mathematics education to discuss these issues and to present research on how mathematics and its learning and teaching are evolving in the Information Age. Given the ever-broadening trends in Artificial Intelligence and the processing of information generally, the aim is to assess their implications for how math is evolving and how math should now be taught to a generation that has been reared in the Information Age. It will also look at the ever-spreading assumption that human intelligence may not be unique—an idea that dovetails with current philosophies of mind such as posthumanism and transhumanism. The role of technology in human evolution has become critical in the contemporary world. Therefore, a subgoal of this book is to illuminate how humans now use their sophisticated technologies to chart cognitive and social progress. Given the interdisciplinary nature of the chapters, this will be of interest to all kinds of readers, from mathematicians themselves working increasingly with computer scientists, to cognitive scientists who carry out research on mathematics cognition and teachers of mathematics in a classroom.
Handbook of Combinatorial Designs
Author: Charles J. Colbourn
Publisher: CRC Press
ISBN: 1420010549
Category : Computers
Languages : en
Pages : 1011
Book Description
Continuing in the bestselling, informative tradition of the first edition, the Handbook of Combinatorial Designs, Second Edition remains the only resource to contain all of the most important results and tables in the field of combinatorial design. This handbook covers the constructions, properties, and applications of designs as well as existence
Publisher: CRC Press
ISBN: 1420010549
Category : Computers
Languages : en
Pages : 1011
Book Description
Continuing in the bestselling, informative tradition of the first edition, the Handbook of Combinatorial Designs, Second Edition remains the only resource to contain all of the most important results and tables in the field of combinatorial design. This handbook covers the constructions, properties, and applications of designs as well as existence
James Joseph Sylvester
Author: Karen Hunger Parshall
Publisher: JHU Press
ISBN: 9780801882913
Category : Biography & Autobiography
Languages : en
Pages : 500
Book Description
This text offers a biography of James Joseph Sylvester & his work. A Cambridge student at first denied a degree because of his faith, Sylvester came to America to teach mathematics, becoming Daniel Coit Gilman's faculty recruit at Johns Hopkins in 1876 & winning the coveted Savilian Professorship of Geometry at Oxford in 1883.
Publisher: JHU Press
ISBN: 9780801882913
Category : Biography & Autobiography
Languages : en
Pages : 500
Book Description
This text offers a biography of James Joseph Sylvester & his work. A Cambridge student at first denied a degree because of his faith, Sylvester came to America to teach mathematics, becoming Daniel Coit Gilman's faculty recruit at Johns Hopkins in 1876 & winning the coveted Savilian Professorship of Geometry at Oxford in 1883.