A Mathematical Journey to Relativity

A Mathematical Journey to Relativity PDF Author: Wladimir-Georges Boskoff
Publisher: Springer Nature
ISBN: 303154823X
Category :
Languages : en
Pages : 556

Get Book Here

Book Description

A Mathematical Journey to Relativity

A Mathematical Journey to Relativity PDF Author: Wladimir-Georges Boskoff
Publisher: Springer Nature
ISBN: 303154823X
Category :
Languages : en
Pages : 556

Get Book Here

Book Description


Mathematical Problems of General Relativity I

Mathematical Problems of General Relativity I PDF Author: Demetrios Christodoulou
Publisher: European Mathematical Society
ISBN: 9783037190050
Category : Science
Languages : en
Pages : 164

Get Book Here

Book Description
General relativity is a theory proposed by Einstein in 1915 as a unified theory of space, time and gravitation. It is based on and extends Newton's theory of gravitation as well as Newton's equations of motion. It is thus fundamentally rooted in classical mechanics. The theory can be seen as a development of Riemannian geometry, itself an extension of Gauss' intrinsic theory of curved surfaces in Euclidean space. The domain of application of the theory is astronomical systems. One of the mathematical methods analyzed and exploited in the present volume is an extension of Noether's fundamental principle connecting symmetries to conserved quantities. This is involved at a most elementary level in the very definition of the notion of hyperbolicity for an Euler-Lagrange system of partial differential equations. Another method, the study and systematic use of foliations by characteristic (null) hypersurfaces, is in the spirit of Roger Penrose's approach in his incompleteness theorem. The methods have applications beyond general relativity to problems in fluid mechanics and, more generally, to the mechanics and electrodynamics of continuous media. The book is intended for advanced students and researchers seeking an introduction to the methods and applications of general relativity.

Mathematical Bridge, A: An Intuitive Journey In Higher Mathematics (2nd Edition)

Mathematical Bridge, A: An Intuitive Journey In Higher Mathematics (2nd Edition) PDF Author: Stephen Fletcher Hewson
Publisher: World Scientific Publishing Company
ISBN: 9813101245
Category : Mathematics
Languages : en
Pages : 672

Get Book Here

Book Description
Although higher mathematics is beautiful, natural and interconnected, to the uninitiated it can feel like an arbitrary mass of disconnected technical definitions, symbols, theorems and methods. An intellectual gulf needs to be crossed before a true, deep appreciation of mathematics can develop. This book bridges this mathematical gap. It focuses on the process of discovery as much as the content, leading the reader to a clear, intuitive understanding of how and why mathematics exists in the way it does.The narrative does not evolve along traditional subject lines: each topic develops from its simplest, intuitive starting point; complexity develops naturally via questions and extensions. Throughout, the book includes levels of explanation, discussion and passion rarely seen in traditional textbooks. The choice of material is similarly rich, ranging from number theory and the nature of mathematical thought to quantum mechanics and the history of mathematics. It rounds off with a selection of thought-provoking and stimulating exercises for the reader.

General Relativity

General Relativity PDF Author: Robert M. Wald
Publisher: University of Chicago Press
ISBN: 0226870375
Category : Science
Languages : en
Pages : 507

Get Book Here

Book Description
"Wald's book is clearly the first textbook on general relativity with a totally modern point of view; and it succeeds very well where others are only partially successful. The book includes full discussions of many problems of current interest which are not treated in any extant book, and all these matters are considered with perception and understanding."—S. Chandrasekhar "A tour de force: lucid, straightforward, mathematically rigorous, exacting in the analysis of the theory in its physical aspect."—L. P. Hughston, Times Higher Education Supplement "Truly excellent. . . . A sophisticated text of manageable size that will probably be read by every student of relativity, astrophysics, and field theory for years to come."—James W. York, Physics Today

General Relativity Without Calculus

General Relativity Without Calculus PDF Author: Jose Natario
Publisher: Springer Science & Business Media
ISBN: 3642214525
Category : Science
Languages : en
Pages : 133

Get Book Here

Book Description
“General Relativity Without Calculus” offers a compact but mathematically correct introduction to the general theory of relativity, assuming only a basic knowledge of high school mathematics and physics. Targeted at first year undergraduates (and advanced high school students) who wish to learn Einstein’s theory beyond popular science accounts, it covers the basics of special relativity, Minkowski space-time, non-Euclidean geometry, Newtonian gravity, the Schwarzschild solution, black holes and cosmology. The quick-paced style is balanced by over 75 exercises (including full solutions), allowing readers to test and consolidate their understanding.

Basic Relativity

Basic Relativity PDF Author: Richard A. Mould
Publisher: Springer Science & Business Media
ISBN: 9780387952109
Category : Science
Languages : en
Pages : 476

Get Book Here

Book Description
This comprehensive textbook develops in a logical and coherent way both the formalism and the physical ideas of special and general relativity. Part one focuses on the special theory and begins with the study of relativistic kinematics from three points of view. Part two begins with a chapter introducing differential geometry. Subsequent chapters cover: rotation, the electromagnetic field, and material media. A second chapter on differential geometry provides the background for Einstein's gravitational-field equation and Schwarzschild's solution. The book is aimed at advanced undergraduates and beginning graduate students in physics or astrophysics.

Semi-Riemannian Geometry

Semi-Riemannian Geometry PDF Author: Stephen C. Newman
Publisher: John Wiley & Sons
ISBN: 1119517532
Category : Mathematics
Languages : en
Pages : 656

Get Book Here

Book Description
An introduction to semi-Riemannian geometry as a foundation for general relativity Semi-Riemannian Geometry: The Mathematical Language of General Relativity is an accessible exposition of the mathematics underlying general relativity. The book begins with background on linear and multilinear algebra, general topology, and real analysis. This is followed by material on the classical theory of curves and surfaces, expanded to include both the Lorentz and Euclidean signatures. The remainder of the book is devoted to a discussion of smooth manifolds, smooth manifolds with boundary, smooth manifolds with a connection, semi-Riemannian manifolds, and differential operators, culminating in applications to Maxwell’s equations and the Einstein tensor. Many worked examples and detailed diagrams are provided to aid understanding. This book will appeal especially to physics students wishing to learn more differential geometry than is usually provided in texts on general relativity.

Introduction to Special Relativity

Introduction to Special Relativity PDF Author: James H. Smith
Publisher: Courier Dover Publications
ISBN: 0486808963
Category : Science
Languages : en
Pages : 244

Get Book Here

Book Description
By the year 1900, most of physics seemed to be encompassed in the two great theories of Newtonian mechanics and Maxwell's theory of electromagnetism. Unfortunately, there were inconsistencies between the two theories that seemed irreconcilable. Although many physicists struggled with the problem, it took the genius of Einstein to see that the inconsistencies were concerned not merely with mechanics and electromagnetism, but with our most elementary ideas of space and time. In the special theory of relativity, Einstein resolved these difficulties and profoundly altered our conception of the physical universe. Readers looking for a concise, well-written explanation of one of the most important theories in modern physics need search no further than this lucid undergraduate-level text. Replete with examples that make it especially suitable for self-study, the book assumes only a knowledge of algebra. Topics include classical relativity and the relativity postulate, time dilation, the twin paradox, momentum and energy, particles of zero mass, electric and magnetic fields and forces, and more.

3+1 Formalism in General Relativity

3+1 Formalism in General Relativity PDF Author: Éric Gourgoulhon
Publisher: Springer
ISBN: 3642245250
Category : Science
Languages : en
Pages : 304

Get Book Here

Book Description
This graduate-level, course-based text is devoted to the 3+1 formalism of general relativity, which also constitutes the theoretical foundations of numerical relativity. The book starts by establishing the mathematical background (differential geometry, hypersurfaces embedded in space-time, foliation of space-time by a family of space-like hypersurfaces), and then turns to the 3+1 decomposition of the Einstein equations, giving rise to the Cauchy problem with constraints, which constitutes the core of 3+1 formalism. The ADM Hamiltonian formulation of general relativity is also introduced at this stage. Finally, the decomposition of the matter and electromagnetic field equations is presented, focusing on the astrophysically relevant cases of a perfect fluid and a perfect conductor (ideal magnetohydrodynamics). The second part of the book introduces more advanced topics: the conformal transformation of the 3-metric on each hypersurface and the corresponding rewriting of the 3+1 Einstein equations, the Isenberg-Wilson-Mathews approximation to general relativity, global quantities associated with asymptotic flatness (ADM mass, linear and angular momentum) and with symmetries (Komar mass and angular momentum). In the last part, the initial data problem is studied, the choice of spacetime coordinates within the 3+1 framework is discussed and various schemes for the time integration of the 3+1 Einstein equations are reviewed. The prerequisites are those of a basic general relativity course with calculations and derivations presented in detail, making this text complete and self-contained. Numerical techniques are not covered in this book.

FUNDAMENTALS OF SPECIAL AND GENERAL RELATIVITY, Revised Edition

FUNDAMENTALS OF SPECIAL AND GENERAL RELATIVITY, Revised Edition PDF Author: KRORI, K. D.
Publisher: PHI Learning Pvt. Ltd.
ISBN: 9388028686
Category : Science
Languages : en
Pages : 341

Get Book Here

Book Description
Relativity, apart from quantum mechanics, is the greatest wonder in science, unfolded single-handedly in the 20th century by Albert Einstein. The scientist developed general relativity as a logical sequel to special relativity. This comprehensive book presents explication of the conceptual evolution and mathematical derivations of the theories of special and general relativity. The book follows an Einsteinian approach while explaining the concepts and the theories of relativity. Divided into 14 chapters, the revised edition of the book covers elementary concepts of Special relativity, as well as the advanced studies on General relativity. The recent theories like Kerr geometry, Sagnac effect, Vaidya geometry, Raychaudhuri equation and Gravitation physics vis-à-vis Quantum physics are presented in easy-to-understand language and simple style. In addition to it, the book gives an in-depth analysis on the applications of advanced theories like Vaidya-Krori-Barua solution from author’s own research works. Apart from that, the book also discusses some of the isotropic and anisotropic cosmological models, in detail. The salient topics discussed in the revised edition of the book are extrinsic curvature, detection of gravitational waves, early universe, evolution of a dead star into a white dwarf or a neutron star or a black hole, dark matter and dark energy. This book is intended for the undergraduate and postgraduate students of Physics and Mathematics. KEY FEATURES • Step-by-step derivation of equations • Easy demagogic approach • Review questions to widen the analytical understanding of the students