Author: A.S. Iljinov
Publisher: CRC Press
ISBN: 1351090704
Category : Science
Languages : en
Pages : 455
Book Description
Intermediate-Energy Nuclear Physics is devoted to discussing the interaction between hadrons with nuclei, which leads to the emission of particles during an intranuclear cascade and subsequent decay of a highly excited residual nucleus. Experimental data and the methods and results of the calculation of probabilities of various processes initiated by intermediate-energy hadrons in nuclei are set forth and discussed. The potential for obtaining information on the structure and properties of nuclei by comparing experimental data with theoretical results is analyzed. New issues, such as analytic methods for the solution of kinetic equations describing the cascade, nuclear absorption of hadrons from bound states of hadronic atoms, interaction of antinucleons with nuclei, multifragmentation of highly excited residual nuclei, and polarization phenomena, are discussed in detail. The book also demonstrates hadron-nucleus interactions that bridge the gap between low-energy and heavy ions physics. It is an interesting reference for nuclear physicists and other researchers interested in the analysis of problems associated with the evolution of the early (hot) universe, neutron stars and supernovas, after-burning of radioactive waste in nuclear energy installations, and electronuclear energy breeding.
Intermediate-Energy Nuclear Physics
Author: A.S. Iljinov
Publisher: CRC Press
ISBN: 1351090704
Category : Science
Languages : en
Pages : 455
Book Description
Intermediate-Energy Nuclear Physics is devoted to discussing the interaction between hadrons with nuclei, which leads to the emission of particles during an intranuclear cascade and subsequent decay of a highly excited residual nucleus. Experimental data and the methods and results of the calculation of probabilities of various processes initiated by intermediate-energy hadrons in nuclei are set forth and discussed. The potential for obtaining information on the structure and properties of nuclei by comparing experimental data with theoretical results is analyzed. New issues, such as analytic methods for the solution of kinetic equations describing the cascade, nuclear absorption of hadrons from bound states of hadronic atoms, interaction of antinucleons with nuclei, multifragmentation of highly excited residual nuclei, and polarization phenomena, are discussed in detail. The book also demonstrates hadron-nucleus interactions that bridge the gap between low-energy and heavy ions physics. It is an interesting reference for nuclear physicists and other researchers interested in the analysis of problems associated with the evolution of the early (hot) universe, neutron stars and supernovas, after-burning of radioactive waste in nuclear energy installations, and electronuclear energy breeding.
Publisher: CRC Press
ISBN: 1351090704
Category : Science
Languages : en
Pages : 455
Book Description
Intermediate-Energy Nuclear Physics is devoted to discussing the interaction between hadrons with nuclei, which leads to the emission of particles during an intranuclear cascade and subsequent decay of a highly excited residual nucleus. Experimental data and the methods and results of the calculation of probabilities of various processes initiated by intermediate-energy hadrons in nuclei are set forth and discussed. The potential for obtaining information on the structure and properties of nuclei by comparing experimental data with theoretical results is analyzed. New issues, such as analytic methods for the solution of kinetic equations describing the cascade, nuclear absorption of hadrons from bound states of hadronic atoms, interaction of antinucleons with nuclei, multifragmentation of highly excited residual nuclei, and polarization phenomena, are discussed in detail. The book also demonstrates hadron-nucleus interactions that bridge the gap between low-energy and heavy ions physics. It is an interesting reference for nuclear physicists and other researchers interested in the analysis of problems associated with the evolution of the early (hot) universe, neutron stars and supernovas, after-burning of radioactive waste in nuclear energy installations, and electronuclear energy breeding.
Advances in Nuclear Dynamics 2
Author: Benito Arruñada
Publisher: Springer Science & Business Media
ISBN: 1475790864
Category : Science
Languages : en
Pages : 413
Book Description
The 12th Winter Workshop on Nuclear Dynamics carried on the tradition, started in 1978, of bringing together scientists working in all regimes of nuclear dynamics. This broad range of related topics allows the researcher attending the Workshop to be exposed to work that normally would be considered outside his/her field, but could po tentially add a new dimension to the understanding of his/her work. At Snowbird, we brought together experimentalists working with heavy ion beams from 10 MeV/nucleon up to 200 GeV /nucleon and theoretical physicists working in diverse areas ranging from antisymmetrized fermionic dynamics to perturbative quantum chromo dynamics. Fu ture work at RHIC was discussed also, with presentations from several of the experimen tal groups. In addition, several talks addressed issues of cross-disciplinary relevance, from the study of water-drop-collisions, to the multi-fragmentation of buckyballs. Clearly the field of nuclear dynamics has a bright future. The understanding of the nuclear equation of state in all of its manifestations is being expanded on all fronts both theoretically and experimentally. Future Workshops on Nuclear Dynamics will certainly have much progress to report. Gary D. Westfall Wolfgang Bauer Michigan State Universzty v PREVIOUS WORKSHOPS The following table contains a list of the dates and locations of the previous Winter Workshops on Nuclear Dynamics as well as the members of the organizing committees. The chairpersons of the conferences are underlined.
Publisher: Springer Science & Business Media
ISBN: 1475790864
Category : Science
Languages : en
Pages : 413
Book Description
The 12th Winter Workshop on Nuclear Dynamics carried on the tradition, started in 1978, of bringing together scientists working in all regimes of nuclear dynamics. This broad range of related topics allows the researcher attending the Workshop to be exposed to work that normally would be considered outside his/her field, but could po tentially add a new dimension to the understanding of his/her work. At Snowbird, we brought together experimentalists working with heavy ion beams from 10 MeV/nucleon up to 200 GeV /nucleon and theoretical physicists working in diverse areas ranging from antisymmetrized fermionic dynamics to perturbative quantum chromo dynamics. Fu ture work at RHIC was discussed also, with presentations from several of the experimen tal groups. In addition, several talks addressed issues of cross-disciplinary relevance, from the study of water-drop-collisions, to the multi-fragmentation of buckyballs. Clearly the field of nuclear dynamics has a bright future. The understanding of the nuclear equation of state in all of its manifestations is being expanded on all fronts both theoretically and experimentally. Future Workshops on Nuclear Dynamics will certainly have much progress to report. Gary D. Westfall Wolfgang Bauer Michigan State Universzty v PREVIOUS WORKSHOPS The following table contains a list of the dates and locations of the previous Winter Workshops on Nuclear Dynamics as well as the members of the organizing committees. The chairpersons of the conferences are underlined.
Multifragmentation in Heavy-Ion Reactions
Author: Rajeev K. Puri
Publisher: CRC Press
ISBN: 1000867633
Category : Science
Languages : en
Pages : 458
Book Description
This book provides a collection of reviews of some of the recent developments in nuclear physics research at intermediate energies from across the globe. It especially focuses on the most essential aspects, such as multifragmentation and associated phenomena in nuclear collisions, with the incident energy region between a few MeV and several hundreds of MeV/nucleon. The topic of the book—multifragmentation—was chosen based on the fact that all heavy-ion collisions revolve around a fragmenting system, which is also thought to have a link to phase transitions. One unique and valuable dimension of this book is that it has brought together the research of several experts working in the field of intermediate energy heavy-ion collisions in various renowned laboratories of the world. It provides a thorough review of the recent developments in various related phenomena, especially multifragmentation, observed at the intermediate-energy range, both theoretically and experimentally. It extensively discusses the concept of nuclear symmetry energy, which is important for the nuclear physics and astrophysics communities. In addition, the book identifies potential research directions and technologies that will drive future innovations. It will serve as a valuable reference for a larger audience, including students who wish to pursue a career in nuclear physics and astrophysics.
Publisher: CRC Press
ISBN: 1000867633
Category : Science
Languages : en
Pages : 458
Book Description
This book provides a collection of reviews of some of the recent developments in nuclear physics research at intermediate energies from across the globe. It especially focuses on the most essential aspects, such as multifragmentation and associated phenomena in nuclear collisions, with the incident energy region between a few MeV and several hundreds of MeV/nucleon. The topic of the book—multifragmentation—was chosen based on the fact that all heavy-ion collisions revolve around a fragmenting system, which is also thought to have a link to phase transitions. One unique and valuable dimension of this book is that it has brought together the research of several experts working in the field of intermediate energy heavy-ion collisions in various renowned laboratories of the world. It provides a thorough review of the recent developments in various related phenomena, especially multifragmentation, observed at the intermediate-energy range, both theoretically and experimentally. It extensively discusses the concept of nuclear symmetry energy, which is important for the nuclear physics and astrophysics communities. In addition, the book identifies potential research directions and technologies that will drive future innovations. It will serve as a valuable reference for a larger audience, including students who wish to pursue a career in nuclear physics and astrophysics.
Heavy Ion Collisions at Intermediate and Relativistic Energies
Author: Amand Faessler
Publisher:
ISBN:
Category : Elastic scattering
Languages : en
Pages : 448
Book Description
Publisher:
ISBN:
Category : Elastic scattering
Languages : en
Pages : 448
Book Description
Intermediate Energy Nuclear Data
Author: NEA Nuclear Science Committee
Publisher: OECD Publishing
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 428
Book Description
On cover & title page: OECD Documents
Publisher: OECD Publishing
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 428
Book Description
On cover & title page: OECD Documents
Modeling Relativistic Heavy Ion Collisions
Author: Sen Cheng
Publisher:
ISBN:
Category : Hadron interactions
Languages : en
Pages : 348
Book Description
Publisher:
ISBN:
Category : Hadron interactions
Languages : en
Pages : 348
Book Description
Advances in Nuclear Physics
Author: Rajeev K. Puri
Publisher: Springer Nature
ISBN: 9811590621
Category : Science
Languages : en
Pages : 282
Book Description
This volume comprises select peer-reviewed papers from the Indo-French Workshop on Multifragmentation, Collective Flow, and Sub-Threshold Particle Production in Heavy-Ion Reactions held at the Department of Physics, Panjab University, Chandigarh, India in February, 2019. The contents highlight latest research trends in intermediate energy nuclear physics and emphasize on the various reaction mechanisms which take place in heavy-ion collisions. The chapters contribute to the understanding of interactions that govern the dynamics at sub-nucleonic level. The book includes contributions from global experts hailing from major research facilities of nuclear physics, and provides a good balance between experimental and theoretical model based studies. Given the range of topics covered, this book can be a useful reference for students and researchers interested in the field of heavy-ion reactions.
Publisher: Springer Nature
ISBN: 9811590621
Category : Science
Languages : en
Pages : 282
Book Description
This volume comprises select peer-reviewed papers from the Indo-French Workshop on Multifragmentation, Collective Flow, and Sub-Threshold Particle Production in Heavy-Ion Reactions held at the Department of Physics, Panjab University, Chandigarh, India in February, 2019. The contents highlight latest research trends in intermediate energy nuclear physics and emphasize on the various reaction mechanisms which take place in heavy-ion collisions. The chapters contribute to the understanding of interactions that govern the dynamics at sub-nucleonic level. The book includes contributions from global experts hailing from major research facilities of nuclear physics, and provides a good balance between experimental and theoretical model based studies. Given the range of topics covered, this book can be a useful reference for students and researchers interested in the field of heavy-ion reactions.
Understanding Nuclear Physics
Author: Nikit Deshmukh
Publisher: Springer Nature
ISBN: 9811984379
Category : Science
Languages : en
Pages : 164
Book Description
This book provides a unique approach to understand the Nuclear Physics, especially from the experimental end. The highlight of this book is that special care has been taken to provide more experimental information, considering real experimental data which has been published in several journals. Special experimental focus is given to methodologies involving: offline gamma counting and online particle detection. The book provides information about recent developments in accelerators, overview of the detectors and concise information of associated electronics, data acquisition systems and computers for data analysis.
Publisher: Springer Nature
ISBN: 9811984379
Category : Science
Languages : en
Pages : 164
Book Description
This book provides a unique approach to understand the Nuclear Physics, especially from the experimental end. The highlight of this book is that special care has been taken to provide more experimental information, considering real experimental data which has been published in several journals. Special experimental focus is given to methodologies involving: offline gamma counting and online particle detection. The book provides information about recent developments in accelerators, overview of the detectors and concise information of associated electronics, data acquisition systems and computers for data analysis.
Nuclear and Particle Astrophysics
Author: Jorge Gustavo Hirsch
Publisher: Cambridge University Press
ISBN: 9780521630108
Category : Science
Languages : en
Pages : 318
Book Description
What is the Universe made of? How old is it? How does a supernova explode? Can we detect black holes? And where do cosmic rays originate? This volume provides a comprehensive and pedagogical introduction to modern ideas and challenging problems in nuclear and particle astrophysics. Based on a graduate school, specially written articles by eight leading experts cover a wealth of exciting topics, including the search for black holes, nucleosynthesis and neutrino transport in supernovae, the physics of neutron stars, massive neutrinos, cosmic ray physics and astrophysics, and physical cosmology. Together, they present the Universe as a laboratory for testing cutting-edge physics and bridge the gap between conference proceedings and specialised monographs. This volume provides an invaluable resource for graduate students and active researchers in nuclear and particle physics, astrophysics and cosmology.
Publisher: Cambridge University Press
ISBN: 9780521630108
Category : Science
Languages : en
Pages : 318
Book Description
What is the Universe made of? How old is it? How does a supernova explode? Can we detect black holes? And where do cosmic rays originate? This volume provides a comprehensive and pedagogical introduction to modern ideas and challenging problems in nuclear and particle astrophysics. Based on a graduate school, specially written articles by eight leading experts cover a wealth of exciting topics, including the search for black holes, nucleosynthesis and neutrino transport in supernovae, the physics of neutron stars, massive neutrinos, cosmic ray physics and astrophysics, and physical cosmology. Together, they present the Universe as a laboratory for testing cutting-edge physics and bridge the gap between conference proceedings and specialised monographs. This volume provides an invaluable resource for graduate students and active researchers in nuclear and particle physics, astrophysics and cosmology.
Properties of QCD Matter at High Baryon Density
Author: Xiaofeng Luo
Publisher: Springer Nature
ISBN: 9811944415
Category : Science
Languages : en
Pages : 294
Book Description
This book highlights the discussions by renown researchers on questions emerged during transition from the relativistic heavy-ion collider (RHIC) to the future electron ion collider (EIC). Over the past two decades, the RHIC has provided a vast amount of data over a wide range of the center of mass energies. What are the scientific priorities, after RHIC is shut down and turned to the future EIC? What should be the future focuses of the high-energy nuclear collisions? What are thermodynamic properties of quantum chromodynamics (QCD) at large baryon density? Where is the phase boundary between quark-gluon-plasma and hadronic matter at high baryon density? How does one make connections from thermodynamics learned in high-energy nuclear collisions to astrophysical topics, to name few, the inner structure of compact stars, and perhaps more interestingly, the dynamical processes of the merging of neutron stars? While most particle physicists are interested in Dark Matter, we should focus on the issues of Visible Matter! Multiple heavy-ion accelerator complexes are under construction: NICA at JINR (4 ~ 11 GeV), FAIR at GSI (2 ~ 4.9 GeV SIS100), HIAF at IMP (2 ~ 4 GeV). In addition, the heavy-ion collision has been actively discussed at the J-PARC. The book is a collective work of top researchers from the field where some of the above-mentioned basic questions will be addressed. We believe that answering those questions will certainly advance our understanding of the phase transition in early universe as well as its evolution that leads to today's world of nature.
Publisher: Springer Nature
ISBN: 9811944415
Category : Science
Languages : en
Pages : 294
Book Description
This book highlights the discussions by renown researchers on questions emerged during transition from the relativistic heavy-ion collider (RHIC) to the future electron ion collider (EIC). Over the past two decades, the RHIC has provided a vast amount of data over a wide range of the center of mass energies. What are the scientific priorities, after RHIC is shut down and turned to the future EIC? What should be the future focuses of the high-energy nuclear collisions? What are thermodynamic properties of quantum chromodynamics (QCD) at large baryon density? Where is the phase boundary between quark-gluon-plasma and hadronic matter at high baryon density? How does one make connections from thermodynamics learned in high-energy nuclear collisions to astrophysical topics, to name few, the inner structure of compact stars, and perhaps more interestingly, the dynamical processes of the merging of neutron stars? While most particle physicists are interested in Dark Matter, we should focus on the issues of Visible Matter! Multiple heavy-ion accelerator complexes are under construction: NICA at JINR (4 ~ 11 GeV), FAIR at GSI (2 ~ 4.9 GeV SIS100), HIAF at IMP (2 ~ 4 GeV). In addition, the heavy-ion collision has been actively discussed at the J-PARC. The book is a collective work of top researchers from the field where some of the above-mentioned basic questions will be addressed. We believe that answering those questions will certainly advance our understanding of the phase transition in early universe as well as its evolution that leads to today's world of nature.