A Geometry of Approximation

A Geometry of Approximation PDF Author: Piero Pagliani
Publisher: Springer Science & Business Media
ISBN: 1402086229
Category : Philosophy
Languages : en
Pages : 771

Get Book Here

Book Description
'A Geometry of Approximation' addresses Rough Set Theory, a field of interdisciplinary research first proposed by Zdzislaw Pawlak in 1982, and focuses mainly on its logic-algebraic interpretation. The theory is embedded in a broader perspective that includes logical and mathematical methodologies pertaining to the theory, as well as related epistemological issues. Any mathematical technique that is introduced in the book is preceded by logical and epistemological explanations. Intuitive justifications are also provided, insofar as possible, so that the general perspective is not lost. Such an approach endows the present treatise with a unique character. Due to this uniqueness in the treatment of the subject, the book will be useful to researchers, graduate and pre-graduate students from various disciplines, such as computer science, mathematics and philosophy. It features an impressive number of examples supported by about 40 tables and 230 figures. The comprehensive index of concepts turns the book into a sort of encyclopaedia for researchers from a number of fields. 'A Geometry of Approximation' links many areas of academic pursuit without losing track of its focal point, Rough Sets.

A Geometry of Approximation

A Geometry of Approximation PDF Author: Piero Pagliani
Publisher: Springer Science & Business Media
ISBN: 1402086229
Category : Philosophy
Languages : en
Pages : 771

Get Book Here

Book Description
'A Geometry of Approximation' addresses Rough Set Theory, a field of interdisciplinary research first proposed by Zdzislaw Pawlak in 1982, and focuses mainly on its logic-algebraic interpretation. The theory is embedded in a broader perspective that includes logical and mathematical methodologies pertaining to the theory, as well as related epistemological issues. Any mathematical technique that is introduced in the book is preceded by logical and epistemological explanations. Intuitive justifications are also provided, insofar as possible, so that the general perspective is not lost. Such an approach endows the present treatise with a unique character. Due to this uniqueness in the treatment of the subject, the book will be useful to researchers, graduate and pre-graduate students from various disciplines, such as computer science, mathematics and philosophy. It features an impressive number of examples supported by about 40 tables and 230 figures. The comprehensive index of concepts turns the book into a sort of encyclopaedia for researchers from a number of fields. 'A Geometry of Approximation' links many areas of academic pursuit without losing track of its focal point, Rough Sets.

Geometric Approximation Algorithms

Geometric Approximation Algorithms PDF Author: Sariel Har-Peled
Publisher: American Mathematical Soc.
ISBN: 0821849115
Category : Computers
Languages : en
Pages : 378

Get Book Here

Book Description
Exact algorithms for dealing with geometric objects are complicated, hard to implement in practice, and slow. Over the last 20 years a theory of geometric approximation algorithms has emerged. These algorithms tend to be simple, fast, and more robust than their exact counterparts. This book is the first to cover geometric approximation algorithms in detail. In addition, more traditional computational geometry techniques that are widely used in developing such algorithms, like sampling, linear programming, etc., are also surveyed. Other topics covered include approximate nearest-neighbor search, shape approximation, coresets, dimension reduction, and embeddings. The topics covered are relatively independent and are supplemented by exercises. Close to 200 color figures are included in the text to illustrate proofs and ideas.

An Introduction to the Approximation of Functions

An Introduction to the Approximation of Functions PDF Author: Theodore J. Rivlin
Publisher: Courier Corporation
ISBN: 9780486640693
Category : Mathematics
Languages : en
Pages : 164

Get Book Here

Book Description
Mathematics of Computing -- Numerical Analysis.

Approximation Algorithms and Semidefinite Programming

Approximation Algorithms and Semidefinite Programming PDF Author: Bernd Gärtner
Publisher: Springer Science & Business Media
ISBN: 3642220150
Category : Mathematics
Languages : en
Pages : 253

Get Book Here

Book Description
Semidefinite programs constitute one of the largest classes of optimization problems that can be solved with reasonable efficiency - both in theory and practice. They play a key role in a variety of research areas, such as combinatorial optimization, approximation algorithms, computational complexity, graph theory, geometry, real algebraic geometry and quantum computing. This book is an introduction to selected aspects of semidefinite programming and its use in approximation algorithms. It covers the basics but also a significant amount of recent and more advanced material. There are many computational problems, such as MAXCUT, for which one cannot reasonably expect to obtain an exact solution efficiently, and in such case, one has to settle for approximate solutions. For MAXCUT and its relatives, exciting recent results suggest that semidefinite programming is probably the ultimate tool. Indeed, assuming the Unique Games Conjecture, a plausible but as yet unproven hypothesis, it was shown that for these problems, known algorithms based on semidefinite programming deliver the best possible approximation ratios among all polynomial-time algorithms. This book follows the “semidefinite side” of these developments, presenting some of the main ideas behind approximation algorithms based on semidefinite programming. It develops the basic theory of semidefinite programming, presents one of the known efficient algorithms in detail, and describes the principles of some others. It also includes applications, focusing on approximation algorithms.

A Vector Space Approach to Geometry

A Vector Space Approach to Geometry PDF Author: Melvin Hausner
Publisher: Courier Dover Publications
ISBN: 0486835391
Category : Mathematics
Languages : en
Pages : 417

Get Book Here

Book Description
A fascinating exploration of the correlation between geometry and linear algebra, this text also offers elementary explanations of the role of geometry in other branches of math and science. 1965 edition.

Geometry of Continued Fractions

Geometry of Continued Fractions PDF Author: Oleg Karpenkov
Publisher: Springer Science & Business Media
ISBN: 3642393683
Category : Mathematics
Languages : en
Pages : 409

Get Book Here

Book Description
Traditionally a subject of number theory, continued fractions appear in dynamical systems, algebraic geometry, topology, and even celestial mechanics. The rise of computational geometry has resulted in renewed interest in multidimensional generalizations of continued fractions. Numerous classical theorems have been extended to the multidimensional case, casting light on phenomena in diverse areas of mathematics. This book introduces a new geometric vision of continued fractions. It covers several applications to questions related to such areas as Diophantine approximation, algebraic number theory, and toric geometry. The reader will find an overview of current progress in the geometric theory of multidimensional continued fractions accompanied by currently open problems. Whenever possible, we illustrate geometric constructions with figures and examples. Each chapter has exercises useful for undergraduate or graduate courses.

Approximation Algorithms

Approximation Algorithms PDF Author: Vijay V. Vazirani
Publisher: Springer Science & Business Media
ISBN: 3662045656
Category : Computers
Languages : en
Pages : 380

Get Book Here

Book Description
Covering the basic techniques used in the latest research work, the author consolidates progress made so far, including some very recent and promising results, and conveys the beauty and excitement of work in the field. He gives clear, lucid explanations of key results and ideas, with intuitive proofs, and provides critical examples and numerous illustrations to help elucidate the algorithms. Many of the results presented have been simplified and new insights provided. Of interest to theoretical computer scientists, operations researchers, and discrete mathematicians.

Winding Around

Winding Around PDF Author: John Roe
Publisher: American Mathematical Soc.
ISBN: 1470421984
Category : Mathematics
Languages : en
Pages : 287

Get Book Here

Book Description
The winding number is one of the most basic invariants in topology. It measures the number of times a moving point P goes around a fixed point Q, provided that P travels on a path that never goes through Q and that the final position of P is the same as its starting position. This simple idea has far-reaching applications. The reader of this book will learn how the winding number can help us show that every polynomial equation has a root (the fundamental theorem of algebra),guarantee a fair division of three objects in space by a single planar cut (the ham sandwich theorem),explain why every simple closed curve has an inside and an outside (the Jordan curve theorem),relate calculus to curvature and the singularities of vector fields (the Hopf index theorem),allow one to subtract infinity from infinity and get a finite answer (Toeplitz operators),generalize to give a fundamental and beautiful insight into the topology of matrix groups (the Bott periodicity theorem). All these subjects and more are developed starting only from mathematics that is common in final-year undergraduate courses.

The Geometry of Uncertainty

The Geometry of Uncertainty PDF Author: Fabio Cuzzolin
Publisher: Springer Nature
ISBN: 3030631532
Category : Computers
Languages : en
Pages : 850

Get Book Here

Book Description
The principal aim of this book is to introduce to the widest possible audience an original view of belief calculus and uncertainty theory. In this geometric approach to uncertainty, uncertainty measures can be seen as points of a suitably complex geometric space, and manipulated in that space, for example, combined or conditioned. In the chapters in Part I, Theories of Uncertainty, the author offers an extensive recapitulation of the state of the art in the mathematics of uncertainty. This part of the book contains the most comprehensive summary to date of the whole of belief theory, with Chap. 4 outlining for the first time, and in a logical order, all the steps of the reasoning chain associated with modelling uncertainty using belief functions, in an attempt to provide a self-contained manual for the working scientist. In addition, the book proposes in Chap. 5 what is possibly the most detailed compendium available of all theories of uncertainty. Part II, The Geometry of Uncertainty, is the core of this book, as it introduces the author’s own geometric approach to uncertainty theory, starting with the geometry of belief functions: Chap. 7 studies the geometry of the space of belief functions, or belief space, both in terms of a simplex and in terms of its recursive bundle structure; Chap. 8 extends the analysis to Dempster’s rule of combination, introducing the notion of a conditional subspace and outlining a simple geometric construction for Dempster’s sum; Chap. 9 delves into the combinatorial properties of plausibility and commonality functions, as equivalent representations of the evidence carried by a belief function; then Chap. 10 starts extending the applicability of the geometric approach to other uncertainty measures, focusing in particular on possibility measures (consonant belief functions) and the related notion of a consistent belief function. The chapters in Part III, Geometric Interplays, are concerned with the interplay of uncertainty measures of different kinds, and the geometry of their relationship, with a particular focus on the approximation problem. Part IV, Geometric Reasoning, examines the application of the geometric approach to the various elements of the reasoning chain illustrated in Chap. 4, in particular conditioning and decision making. Part V concludes the book by outlining a future, complete statistical theory of random sets, future extensions of the geometric approach, and identifying high-impact applications to climate change, machine learning and artificial intelligence. The book is suitable for researchers in artificial intelligence, statistics, and applied science engaged with theories of uncertainty. The book is supported with the most comprehensive bibliography on belief and uncertainty theory.

Finite Elements and Approximation

Finite Elements and Approximation PDF Author: O. C. Zienkiewicz
Publisher: Courier Corporation
ISBN: 048631801X
Category : Technology & Engineering
Languages : en
Pages : 356

Get Book Here

Book Description
A powerful tool for the approximate solution of differential equations, the finite element is extensively used in industry and research. This book offers students of engineering and physics a comprehensive view of the principles involved, with numerous illustrative examples and exercises. Starting with continuum boundary value problems and the need for numerical discretization, the text examines finite difference methods, weighted residual methods in the context of continuous trial functions, and piecewise defined trial functions and the finite element method. Additional topics include higher order finite element approximation, mapping and numerical integration, variational methods, and partial discretization and time-dependent problems. A survey of generalized finite elements and error estimates concludes the text.