A Fully Coupled Hydro-thermo-mechanical 3-D Finite Element Model of Fluid Flow in Fractured Rock

A Fully Coupled Hydro-thermo-mechanical 3-D Finite Element Model of Fluid Flow in Fractured Rock PDF Author: Tan Liu
Publisher:
ISBN:
Category :
Languages : en
Pages : 202

Get Book Here

Book Description

A Fully Coupled Hydro-thermo-mechanical 3-D Finite Element Model of Fluid Flow in Fractured Rock

A Fully Coupled Hydro-thermo-mechanical 3-D Finite Element Model of Fluid Flow in Fractured Rock PDF Author: Tan Liu
Publisher:
ISBN:
Category :
Languages : en
Pages : 202

Get Book Here

Book Description


Coupled Thermo-Hydro-Mechanical Processes of Fractured Media

Coupled Thermo-Hydro-Mechanical Processes of Fractured Media PDF Author: O. Stephanson
Publisher: Elsevier
ISBN: 0080542859
Category : Science
Languages : en
Pages : 597

Get Book Here

Book Description
This work brings together the results, information and data that emerged from an international cooperative project, DECOVALEX, 1992-1995. This project was concerned with the mathematical and experimental studies of coupled thermo(T) -hydro(H) -mechanical(M) processes in fractured media related to radioactive waste disposal. The book presents, for the first time, the systematic formulation of mathematical models of the coupled T-H-M processes of fractured media, their validation against theoretical bench-mark tests, and experimental studies at both laboratory and field scales. It also presents, for the first time, a comprehensive analysis of continuum, and discrete approaches to the study of the problems of (as well as a complete description of), the computer codes applied to the studies. The first two chapters provide a conceptual introduction to the coupled T-H-M processes in fractured media and the DECOVALEX project. The next seven chapters give a state-of-the-art survey of the constitutive models of rock fractures and formulation of coupled T-H-M phenomena with continuum and discontinuum approaches, and associated numerical methods. A study on the three generic Bench-Mark Test problems and six Test Case problems of laboratory and field experiments are reported in chapters 10 to 18. Chapter 19 contains lessons learned during the project. The research contained in this book will be valuable for designers, practising engineers and national waste management officials who are concerned with planning, design and performance, and safety assessments of radioactive waste repositories. Researchers and postgraduate students working in this field will also find the book of particular relevance.

Thermo-Hydro-Mechanical Coupling in Fractured Rock

Thermo-Hydro-Mechanical Coupling in Fractured Rock PDF Author: Hans-Joachim Kümpel
Publisher: Birkhäuser
ISBN: 3034880839
Category : Science
Languages : en
Pages : 355

Get Book Here

Book Description
(4). The next three papers extend these views by taking a closer look on parameters that govern hydraulic diffusivity in sandstones and other types of rocks. Specific targets addressed are the influence of differential stress on permeability (5), imaging of the fracture geometry (6), and pressure induced variations in the pore geometry (7). Contributions no. 8 to 10 cover investigations of permeability-porosity relationships during rock evolution (8), of the formation, propagation, and roughness of fractures in a plexi-glass block (9), and pressure oscillation effects of two-phase flow under controlled conditions (10). The subsequent four articles focus on diverse modeling approaches. Issues considered are how the geometry and the mechanical behavior of fractures can be characterized by mathematical expressions (11), how the evolution of permeability in a microcracking rock can be expressed by an analytical model (12), deviations from the cubic law for a fracture of varying aperture (13), and the numerical simulation of scale effects in flow through fractures (14). Three further papers refer to in situ observations, being related to topics as the assessment of in situ permeability from the spatio temporal distribution of an aftershock sequence (15), to the scale dependence of hydraulic pathways in crystalline rock (16), and to the significance of pore pressure - stress coupling in deep tunnels and galleries (17).

3D Modeling of Coupled Rock Deformation and Thermo-poro-mechanical Processes in Fractures

3D Modeling of Coupled Rock Deformation and Thermo-poro-mechanical Processes in Fractures PDF Author: Chakra Rawal
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Problems involving coupled thermo-poro-chemo-mechanical processes are of great importance in geothermal and petroleum reservoir systems. In particular, economic power production from enhanced geothermal systems, effective water-flooding of petroleum reservoirs, and stimulation of gas shale reservoirs are significantly influenced by coupled processes. During such procedures, stress state in the reservoir is changed due to variation in pore fluid pressure and temperature. This can cause deformation and failure of weak planes of the formation with creation of new fractures, which impacts reservoir response. Incorporation of geomechanical factor into engineering analyses using fully coupled geomechanics-reservoir flow modeling exhibits computational challenges and numerical difficulties. In this study, we develop and apply efficient numerical models to solve 3D injection/extraction geomechanics problems formulated within the framework of thermo-poro-mechanical theory with reactive flow. The models rely on combining Displacement Discontinuity (DD) Boundary Element Method (BEM) and Finite Element Method (FEM) to solve the governing equations of thermo-poro-mechanical processes involving fracture/reservoir matrix. The integration of BEM and FEM is accomplished through direct and iterative procedures. In each case, the numerical algorithms are tested against a series of analytical solutions. 3D study of fluid injection and extraction into the geothermal reservoir illustrates that thermo-poro-mechanical processes change fracture aperture (fracture conductivity) significantly and influence the fluid flow. Simulations that consider joint stiffness heterogeneity show development of non-uniform flow paths within the crack. Undersaturated fluid injection causes large silica mass dissolution and increases fracture aperture while supersaturated fluid causes mineral precipitation and closes fracture aperture. Results show that for common reservoir and injection conditions, the impact of fully developed thermoelastic effect on fracture aperture tend to be greater compare to that of poroelastic effect. Poroelastic study of hydraulic fracturing demonstrates that large pore pressure increase especially during multiple hydraulic fracture creation causes effective tensile stress at the fracture surface and shear failure around the main fracture. Finally, a hybrid BEFEM model is developed to analyze stress redistribution in the overburden and within the reservoir during fluid injection and production. Numerical results show that fluid injection leads to reservoir dilation and induces vertical deformation, particularly near the injection well. However, fluid withdrawal causes reservoir to compact. The Mandel-Cryer effect is also successfully captured in numerical simulations, i.e., pore pressure increase/decrease is non-monotonic with a short time values that are above/below the background pore pressure.

Coupled Thermo-Hydro-Mechanical-Chemical Processes in Geo-systems

Coupled Thermo-Hydro-Mechanical-Chemical Processes in Geo-systems PDF Author: Ove Stephansson
Publisher: Elsevier
ISBN: 0080530060
Category : Science
Languages : en
Pages : 853

Get Book Here

Book Description
Among the most important and exciting current steps forward in geo-engineering is the development of coupled numerical models. They represent the basic physics of geo-engineering processes which can include the effects of heat, water, mechanics and chemistry. Such models provide an integrating focus for the wide range of geo-engineering disciplines. The articles within this volume were originally presented at the inaugural GeoProc conference held in Stockholm and contain a collection of unusually high quality information not available elsewhere in an edited and coherent form. This collection not only benefits from the latest theoretical developments but also applies them to a number of practical and wide ranging applications. Examples include the environmental issues around radioactive waste disposal deep in rock, and the search for new reserves of oil and gas.

A Numerical Model of Hydro-thermo-mechanical Coupling in a Fractured Rock Mass

A Numerical Model of Hydro-thermo-mechanical Coupling in a Fractured Rock Mass PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 182

Get Book Here

Book Description
Coupled hydro-thermo-mechanical codes with the ability to model fractured materials are used for predicting groundwater flow behavior in fractured aquifers containing thermal sources. The potential applications of such a code include the analysis of groundwater behavior within a geothermal reservoir. The capability of modeling hydro-thermo systems with a dual porosity, fracture flow model has been previously developed in the finite element code, FEHM. FEHM has been modified to include stress coupling with the dual porosity feature. FEHM has been further developed to implicitly couple the dependence of fracture hydraulic conductivity on effective stress within two dimensional, saturated aquifers containing fracture systems. The cubic law for flow between parallel plates was used to model fracture permeability. The Bartin-Bandis relationship was used to determine the fracture aperture within the cubic law. The code used a Newton Raphson iteration to implicitly solve for six unknowns at each node. Results from a model of heat flow from a reservoir to the moving fluid in a single fracture compared well with analytic results. Results of a model showing the increase in fracture flow due to a single fracture opening under fluid pressure compared well with analytic results. A hot dry rock, geothermal reservoir was modeled with realistic time steps indicating that the modified FEHM code does successfully model coupled flow problems with no convergence problems.

Coupled Thermo-Hydro-Mechanical-Chemical Processes in Fractured Rocks

Coupled Thermo-Hydro-Mechanical-Chemical Processes in Fractured Rocks PDF Author: Zhihong Zhao
Publisher: Springer Nature
ISBN: 9819962102
Category : Science
Languages : en
Pages : 267

Get Book Here

Book Description
This book presents the coupled Thermo-Hydro-Mechanical-Chemical (THMC) processes in fractured rocks at varying scales from single fractures to fracture networks. It also discussed the implication and potential application of the advanced understanding of coupled THMC processes in fractured rocks for geotechnical and geo-energy engineering.

Adaptive Analysis of Damage and Fracture in Rock with Multiphysical Fields Coupling

Adaptive Analysis of Damage and Fracture in Rock with Multiphysical Fields Coupling PDF Author: Yongliang Wang
Publisher: Springer Nature
ISBN: 981157197X
Category : Science
Languages : en
Pages : 204

Get Book Here

Book Description
This book mainly focuses on the adaptive analysis of damage and fracture in rock, taking into account multiphysical fields coupling (thermal, hydro, mechanical, and chemical fields). This type of coupling is a crucial aspect in practical engineering for e.g. coal mining, oil and gas exploration, and civil engineering. However, understanding the influencing mechanisms and preventing the disasters resulting from damage and fracture evolution in rocks require high-precision and reliable solutions. This book proposes adaptive numerical algorithms and simulation analysis methods that offer significant advantages in terms of accuracy and reliability. It helps readers understand these innovative methods quickly and easily. The content consists of: (1) a finite element algorithm for modeling the continuum damage evolution in rocks, (2) adaptive finite element analysis for continuum damage evolution and determining the wellbore stability of transversely isotropic rock, (3) an adaptive finite element algorithm for damage detection in non-uniform Euler–Bernoulli beams with multiple cracks, using natural frequencies, (4) adaptive finite element–discrete element analysis for determining multistage hydrofracturing in naturally fractured reservoirs, (5) adaptive finite element–discrete element analysis for multistage supercritical CO2 fracturing and microseismic modeling, and (6) an adaptive finite element–discrete element–finite volume algorithm for 3D multiscale propagation of hydraulic fracture networks, taking into account hydro-mechanical coupling. Given its scope, the book offers a valuable reference guide for researchers, postgraduates and undergraduates majoring in engineering mechanics, mining engineering, geotechnical engineering, and geological engineering.

Hydraulic Fracture Modeling

Hydraulic Fracture Modeling PDF Author: Yu-Shu Wu
Publisher: Gulf Professional Publishing
ISBN: 0128129999
Category : Technology & Engineering
Languages : en
Pages : 568

Get Book Here

Book Description
Hydraulic Fracture Modeling delivers all the pertinent technology and solutions in one product to become the go-to source for petroleum and reservoir engineers. Providing tools and approaches, this multi-contributed reference presents current and upcoming developments for modeling rock fracturing including their limitations and problem-solving applications. Fractures are common in oil and gas reservoir formations, and with the ongoing increase in development of unconventional reservoirs, more petroleum engineers today need to know the latest technology surrounding hydraulic fracturing technology such as fracture rock modeling. There is tremendous research in the area but not all located in one place. Covering two types of modeling technologies, various effective fracturing approaches and model applications for fracturing, the book equips today’s petroleum engineer with an all-inclusive product to characterize and optimize today’s more complex reservoirs. Offers understanding of the details surrounding fracturing and fracture modeling technology, including theories and quantitative methods Provides academic and practical perspective from multiple contributors at the forefront of hydraulic fracturing and rock mechanics Provides today’s petroleum engineer with model validation tools backed by real-world case studies

A 3D Hydro-mechanical Discrete Element Model for Hydraulic Fracturing in Naturally Fractured Rock

A 3D Hydro-mechanical Discrete Element Model for Hydraulic Fracturing in Naturally Fractured Rock PDF Author: Efthymios Papachristos
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Hydraulic fracturing is at the core of a number of naturally occurring and induced phenomena and crucial for a sustainable development of energy resource production. Given its crucial role this process has been given increasing attention in the last three decades from the academic world. Nonetheless a number of very significant aspects of this process have been systematically overlooked by the community. Two of the most notable ones are the inability of the vast majority of existing models to tackle at once the propagation of hydraulic fractures in realistic, fractured rocks-masses where hydraulic fracturing is a competing dipole mechanism between fracturing of the intact rock and re-activation of exiting fracture networks. Another essential aspect of this process is that it is intrinsically three-dimensional which is neglected by most models. To tackle this vital problem taking into account these pivotal aspects, a fully coupled hydro-mechanical model based on the discrete element method has been developed. The rock mass is here represented by a set of discrete elements interacting through elastic-brittle bonds that can break to form cracks inside the simulated medium. Theses cracks can coalesce to form fractures. A finite volume scheme is used to simulate the fluid flow in between these discrete elements. The flow is computed as a function of the pore space deformation in the intact medium and of the cracks' aperture in the fractures. Furthermore, the natural fractures are modelled explicitly and present mechanical and hydraulic properties different from the rock matrix. Employing this model in an intact numerical specimen, single fluid injection and multiple closely spaced sequential injections, enabled the description the full spatio-temporal evolution of HF propagation and its impact on quantitative indexes used in description of hydraulic fracturing treatments, such as fractured volume, fracture intensity and down-the-hole pressure for different control parameters and in-situ stress-fields. Moreover, injections from perforation slots which are not well aligned to the minimum stress plane showed possible creation of percolating non-planar hydraulic fractures of low connectivity, which can be troublesome for proppant placement. Also, strong interactions between closely spaced HF were highlighted by tracking the local principal stress rotation around the injection zones, emphasizing the importance of stress shadow effects. Optimization solutions are proposed for multiple treatments from a non-perfectly aligned wellbore. Finally, interaction between a single hydraulic fracture and a single natural fracture of varying properties and orientations was studied using the proposed model. The evolution of the hydraulic fracture and the global response of the specimen were recorded in a way comparable to existing experimental data to bridge the experimental and numerical findings. Persistent natural fractures appeared to be barriers for the hydraulic fracture if their conductance is high compared to the matrix conductivity or if their stiffness is significantly low compared to the rock matrix rigidity. Low stiffness in non-persistent defects might also cause a bifurcation of the main hydraulic fracture due to the local stress field perturbation around the defect and ahead of the hydraulic fracture tip. Furthermore, high approach angles and differential stresses seemed to favour crossing of the natural fracture while low angles enable shear slippage or dilation on the part of the plane which is not affected by the local stress perturbation.