Theoretical and Numerical Combustion

Theoretical and Numerical Combustion PDF Author: Thierry Poinsot
Publisher: R.T. Edwards, Inc.
ISBN: 9781930217102
Category : Science
Languages : en
Pages : 544

Get Book Here

Book Description
Introducing numerical techniques for combustion, this textbook describes both laminar and turbulent flames, addresses the problem of flame-wall interaction, and presents a series of theoretical tools used to study the coupling phenomena between combustion and acoustics. The second edition incorporates recent advances in unsteady simulation methods,

Theoretical and Numerical Combustion

Theoretical and Numerical Combustion PDF Author: Thierry Poinsot
Publisher: R.T. Edwards, Inc.
ISBN: 9781930217102
Category : Science
Languages : en
Pages : 544

Get Book Here

Book Description
Introducing numerical techniques for combustion, this textbook describes both laminar and turbulent flames, addresses the problem of flame-wall interaction, and presents a series of theoretical tools used to study the coupling phenomena between combustion and acoustics. The second edition incorporates recent advances in unsteady simulation methods,

Detailed and Reduced Kinetic Mechanisms in Low-emission Combustion Processes

Detailed and Reduced Kinetic Mechanisms in Low-emission Combustion Processes PDF Author: Sylvie Honnet
Publisher: Cuvillier Verlag
ISBN: 386727391X
Category :
Languages : en
Pages : 147

Get Book Here

Book Description


Turbulent Combustion Modeling

Turbulent Combustion Modeling PDF Author: Tarek Echekki
Publisher: Springer Science & Business Media
ISBN: 9400704127
Category : Technology & Engineering
Languages : en
Pages : 496

Get Book Here

Book Description
Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field.

30th AIAA/ASME/SAE/ASEE Joint Propulsion Conference

30th AIAA/ASME/SAE/ASEE Joint Propulsion Conference PDF Author:
Publisher:
ISBN:
Category : Airplanes
Languages : en
Pages : 728

Get Book Here

Book Description


Turbulent Combustion

Turbulent Combustion PDF Author: Norbert Peters
Publisher: Cambridge University Press
ISBN: 1139428063
Category : Science
Languages : en
Pages : 322

Get Book Here

Book Description
The combustion of fossil fuels remains a key technology for the foreseeable future. It is therefore important that we understand the mechanisms of combustion and, in particular, the role of turbulence within this process. Combustion always takes place within a turbulent flow field for two reasons: turbulence increases the mixing process and enhances combustion, but at the same time combustion releases heat which generates flow instability through buoyancy, thus enhancing the transition to turbulence. The four chapters of this book present a thorough introduction to the field of turbulent combustion. After an overview of modeling approaches, the three remaining chapters consider the three distinct cases of premixed, non-premixed, and partially premixed combustion, respectively. This book will be of value to researchers and students of engineering and applied mathematics by demonstrating the current theories of turbulent combustion within a unified presentation of the field.

31st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit

31st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit PDF Author:
Publisher:
ISBN:
Category : Airplanes
Languages : en
Pages : 538

Get Book Here

Book Description


La Modélisation multidimensionnelle des écoulements dans les moteurs

La Modélisation multidimensionnelle des écoulements dans les moteurs PDF Author: Thierry Baritaud
Publisher: Editions TECHNIP
ISBN: 9782710807711
Category : Technology & Engineering
Languages : en
Pages : 212

Get Book Here

Book Description
With an increasingly challenging commercial environment, and the need imposed by safety principles to reduce both fuel consumption and pollutant emissions, the development of new engines can now benefit from the advances of computational fluid dynamics. Engine CFD is a most challenging simulation problem. This is caused by the spread of time and space scales, the excursion amplitude of most parameters, the high quasi-cyclic unstationarity of engine flows, the importance of minor geometry details, the number of physical and chemical processes including turbulent combustion and multi-phase flows to model. However, engine CFD has now reached a state where it has become a widely used tool, not only for engine understanding, but also increasingly for engine design. Undoubtedly, laser diagnostics in optical access engines have also brought significant help.Contents: 1. State of the art of multi-dimensional modeling of engine reacting flows. 2. Simulation of the intake and compression strokes of a motored 4-valve SI engine with a finite element code. 3. A parallel, unstructured-mesh methodology for device-scale combustion calculations. 4. Large-eddy simulation of in-cylinder flows. 5. Simulation of engine internal flows using digital physics. 6. Automatic block decomposition of parametrically changing volumes. 7. Developments in spray modeling in diesel and direct-injection gasoline engines. 8. Cyto-fluid dynamic theory of atomization processes. 9. Influence of the wall temperature on the mixture preparation in DI gasoline engines. 10. Simulation of cavitating flows in diesel injectors. 11. Recent developments in simulations of internal flows in high pressure swirl injectors. 12. 3D simulation of DI diesel combustion and pollutant formation using a two-component reference fuel. 13. Modeling of NOx and soot formation in diesel combustion. 14. Multi-dimensional modeling of combustion and pollutants formation of new technology light duty diesel engines. 15. 3D modeling of combustion for DI-SI engines. 16. Combustion modeling with the G-equation. 17. Multi-dimensional modeling of the aerodynamic and combustion in diesel engines. 18. CFD aided development of a SI-DI engine. 19. CFD engine applications at FIAT research centre. 20. Application of a detailed emission model for heavy duty diesel engine simulations. 21. CFD based shape optimization of IC engine.

International Aerospace Abstracts

International Aerospace Abstracts PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 984

Get Book Here

Book Description


Modeling Engine Spray and Combustion Processes

Modeling Engine Spray and Combustion Processes PDF Author: Gunnar Stiesch
Publisher: Springer Science & Business Media
ISBN: 3662087901
Category : Computers
Languages : en
Pages : 293

Get Book Here

Book Description
The utilization of mathematical models to numerically describe the performance of internal combustion engines is of great significance in the development of new and improved engines. Today, such simulation models can already be viewed as standard tools, and their importance is likely to increase further as available com puter power is expected to increase and the predictive quality of the models is constantly enhanced. This book describes and discusses the most widely used mathematical models for in-cylinder spray and combustion processes, which are the most important subprocesses affecting engine fuel consumption and pollutant emissions. The relevant thermodynamic, fluid dynamic and chemical principles are summarized, and then the application of these principles to the in-cylinder processes is ex plained. Different modeling approaches for the each subprocesses are compared and discussed with respect to the governing model assumptions and simplifica tions. Conclusions are drawn as to which model approach is appropriate for a specific type of problem in the development process of an engine. Hence, this book may serve both as a graduate level textbook for combustion engineering stu dents and as a reference for professionals employed in the field of combustion en gine modeling. The research necessary for this book was carried out during my employment as a postdoctoral scientist at the Institute of Technical Combustion (ITV) at the Uni versity of Hannover, Germany and at the Engine Research Center (ERC) at the University of Wisconsin-Madison, USA.

The John Zink Hamworthy Combustion Handbook, Second Edition

The John Zink Hamworthy Combustion Handbook, Second Edition PDF Author: Charles E. Baukal, Jr.
Publisher: CRC Press
ISBN: 143983962X
Category : Science
Languages : en
Pages : 652

Get Book Here

Book Description
Despite the length of time it has been around, its importance, and vast amounts of research, combustion is still far from being completely understood. Environmental, cost, and fuel consumption issues add further complexity, particularly in the process and power generation industries. Dedicated to advancing the art and science of industrial combustion, The John Zink Hamworthy Combustion Handbook, Second Edition: Volume One – Fundamentals gives you a strong understanding of the basic concepts and theory. Under the leadership of Charles E. Baukal, Jr., top combustion engineers and technologists from John Zink Hamworthy Combustion examine the interdisciplinary fundamentals—including chemistry, fluid flow, and heat transfer—as they apply to industrial combustion. What’s New in This Edition Expanded to three volumes, with Volume One focusing on fundamentals Extensive updates and revisions throughout Updated information on HPI/CPI industries, including alternative fuels, advanced refining techniques, emissions standards, and new technologies Expanded coverage of the physical and chemical principles of combustion New practices in coal combustion, such as gasification The latest developments in cold-flow modeling, CFD-based modeling, and mathematical modeling Greater coverage of pollution emissions and NOx reduction techniques New material on combustion diagnostics, testing, and training More property data useful for the design and operation of combustion equipment Coverage of technologies such as metallurgy, refractories, blowers, and vapor control equipment Now expanded to three volumes, the second edition of the bestselling The John Zink Combustion Handbook continues to provide the comprehensive coverage, up-to-date information, and visual presentation that made the first edition an industry standard. Featuring color illustrations and photographs throughout, Volume One: Fundamentals helps you broaden your understanding of industrial combustion to better meet the challenges of this field. For the other volumes in the set, see The John Zink Hamworthy Combustion Handbook, Second Edition: Three-Volume Set.